aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rwxr-xr-xbuch/Makefile28
-rw-r--r--buch/aufgaben2.tex8
-rw-r--r--buch/chapters/040-rekursion/Makefile.inc1
-rw-r--r--buch/chapters/040-rekursion/beta.tex104
-rw-r--r--buch/chapters/040-rekursion/betaverteilung.tex487
-rw-r--r--buch/chapters/040-rekursion/images/Makefile16
-rw-r--r--buch/chapters/040-rekursion/images/beta.pdfbin0 -> 109772 bytes
-rw-r--r--buch/chapters/040-rekursion/images/beta.tex236
-rw-r--r--buch/chapters/040-rekursion/images/betadist.m58
-rw-r--r--buch/chapters/040-rekursion/images/order.m119
-rw-r--r--buch/chapters/040-rekursion/images/order.pdfbin0 -> 32692 bytes
-rw-r--r--buch/chapters/040-rekursion/images/order.tex125
-rw-r--r--buch/chapters/070-orthogonalitaet/Makefile.inc1
-rw-r--r--buch/chapters/070-orthogonalitaet/chapter.tex2
-rw-r--r--buch/chapters/070-orthogonalitaet/gaussquadratur.tex8
-rw-r--r--buch/chapters/070-orthogonalitaet/jacobi.tex22
-rw-r--r--buch/chapters/070-orthogonalitaet/orthogonal.tex51
-rw-r--r--buch/chapters/070-orthogonalitaet/uebungsaufgaben/701.tex137
-rw-r--r--buch/chapters/075-fourier/2d.tex19
-rw-r--r--buch/chapters/075-fourier/Makefile.inc2
-rw-r--r--buch/chapters/075-fourier/bessel.tex620
-rw-r--r--buch/chapters/075-fourier/chapter.tex3
-rw-r--r--buch/chapters/090-pde/Makefile.inc1
-rw-r--r--buch/chapters/090-pde/chapter.tex12
-rw-r--r--buch/chapters/090-pde/gleichung.tex1
-rw-r--r--buch/chapters/090-pde/kreis.tex5
-rw-r--r--buch/chapters/090-pde/kugel.tex382
-rw-r--r--buch/chapters/090-pde/rechteck.tex1
-rw-r--r--buch/chapters/090-pde/separation.tex1
-rw-r--r--buch/chapters/090-pde/uebungsaufgaben/901.tex82
-rw-r--r--buch/chapters/110-elliptisch/Makefile.inc1
-rw-r--r--buch/chapters/110-elliptisch/chapter.tex12
-rw-r--r--buch/chapters/110-elliptisch/images/jacobiplots.pdfbin57192 -> 56975 bytes
-rw-r--r--buch/chapters/110-elliptisch/images/jacobiplots.tex2
-rw-r--r--buch/chapters/110-elliptisch/uebungsaufgaben/1.tex312
-rw-r--r--buch/chapters/110-elliptisch/uebungsaufgaben/Makefile8
-rw-r--r--buch/chapters/110-elliptisch/uebungsaufgaben/anharmonisch.pdfbin0 -> 19279 bytes
-rw-r--r--buch/chapters/110-elliptisch/uebungsaufgaben/anharmonisch.tex62
-rwxr-xr-xbuch/common/Makefile.inc8
-rw-r--r--buch/papers/000template/main.tex5
-rw-r--r--buch/papers/000template/teil0.tex3
-rw-r--r--buch/papers/000template/teil1.tex3
-rw-r--r--buch/papers/000template/teil2.tex3
-rw-r--r--buch/papers/000template/teil3.tex3
-rw-r--r--buch/papers/dreieck/images/beta.pdfbin100791 -> 109717 bytes
-rw-r--r--buch/papers/dreieck/images/beta.tex208
-rw-r--r--buch/papers/dreieck/images/betadist.m24
-rw-r--r--buch/papers/dreieck/teil1.tex411
-rw-r--r--buch/papers/kugel/Makefile.inc8
-rw-r--r--buch/papers/kugel/main.tex57
-rw-r--r--buch/papers/kugel/teil0.tex22
-rw-r--r--buch/papers/kugel/teil1.tex55
-rw-r--r--buch/papers/kugel/teil2.tex40
-rw-r--r--buch/papers/kugel/teil3.tex40
-rw-r--r--buch/papers/lambertw/Bilder/something.svg1
-rw-r--r--buch/papers/lambertw/packages.tex2
-rw-r--r--buch/papers/lambertw/teil0.tex21
-rw-r--r--buch/papers/lambertw/teil1.tex109
-rw-r--r--buch/papers/transfer/main.tex23
-rw-r--r--vorlesungsnotizen/B/5 - Orthogonale Polynome.pdfbin0 -> 2996979 bytes
-rw-r--r--vorlesungsnotizen/B/6 - Elliptische Funktionen.pdfbin0 -> 3388898 bytes
-rw-r--r--vorlesungsnotizen/B/7 - Komplexe Funktionen.pdfbin0 -> 2772838 bytes
-rw-r--r--vorlesungsnotizen/MSE/3 - Differentialgleichungen.pdfbin0 -> 6237222 bytes
63 files changed, 3113 insertions, 862 deletions
diff --git a/buch/Makefile b/buch/Makefile
index e2ad4c0..00fcf42 100755
--- a/buch/Makefile
+++ b/buch/Makefile
@@ -18,15 +18,15 @@ ALLTEXFILES = $(TEXFILES) $(CHAPTERFILES)
# Buchblock für Druckerei
#
buch.pdf: buch.tex $(TEXFILES) buch.ind $(BLXFILES)
- pdflatex buch.tex
- bibtex buch
+ $(pdflatex) buch.tex
+ $(bibtex) buch
buch.idx: buch.tex $(TEXFILES) images
- touch buch.ind
- pdflatex buch.tex
+ $(touch) buch.ind
+ $(pdflatex) buch.tex
buch.ind: buch.idx
- makeindex buch.idx
+ $(makeindex) buch.idx
#
# Papers in einzelne PDF-Files separieren für digitales Feedback
@@ -39,16 +39,16 @@ separate: buch.aux buch.pdf
#
SeminarSpezielleFunktionen.pdf: SeminarSpezielleFunktionen.tex $(TEXFILES) \
SeminarSpezielleFunktionen.ind $(BLXFILES)
- pdflatex SeminarSpezielleFunktionen.tex
- bibtex SeminarSpezielleFunktionen
+ $(pdflatex) SeminarSpezielleFunktionen.tex
+ $(bibtex) SeminarSpezielleFunktionen
SeminarSpezielleFunktionen.idx: SeminarSpezielleFunktionen.tex $(TEXFILES) \
images
- touch SeminarSpezielleFunktionen.ind
- pdflatex SeminarSpezielleFunktionen.tex
+ $(touch) SeminarSpezielleFunktionen.ind
+ $(pdflatex) SeminarSpezielleFunktionen.tex
SeminarSpezielleFunktionen.ind: SeminarSpezielleFunktionen.idx
- makeindex SeminarSpezielleFunktionen
+ $(makeindex) SeminarSpezielleFunktionen
#
# This Makefile can also construct the short tests
@@ -56,17 +56,17 @@ SeminarSpezielleFunktionen.ind: SeminarSpezielleFunktionen.idx
tests: test1.pdf test2.pdf test3.pdf
test1.pdf: common/test-common.tex common/test1.tex aufgaben1.tex
- pdflatex common/test1.tex
+ $(pdflatex) common/test1.tex
test2.pdf: common/test-common.tex common/test1.tex aufgaben2.tex
- pdflatex common/test2.tex
+ $(pdflatex) common/test2.tex
test3.pdf: common/test-common.tex common/test1.tex aufgaben3.tex
- pdflatex common/test3.tex
+ $(pdflatex) common/test3.tex
#
# Errata
#
errata.pdf: errata.tex
- pdflatex errata.tex
+ $(pdflatex) errata.tex
diff --git a/buch/aufgaben2.tex b/buch/aufgaben2.tex
index bed14fb..8073f26 100644
--- a/buch/aufgaben2.tex
+++ b/buch/aufgaben2.tex
@@ -4,8 +4,8 @@
% (c) 2022 Prof. Dr. Andreas Mueller, OST
%
-%\item
-%\input chapters/40-eigenwerte/uebungsaufgaben/4004.tex
-%\item
-%\input chapters/40-eigenwerte/uebungsaufgaben/4005.tex
+\item
+\input{chapters/090-pde/uebungsaufgaben/901.tex}
+\item
+\input{chapters/070-orthogonalitaet/uebungsaufgaben/701.tex}
diff --git a/buch/chapters/040-rekursion/Makefile.inc b/buch/chapters/040-rekursion/Makefile.inc
index ed8fd51..a222b1c 100644
--- a/buch/chapters/040-rekursion/Makefile.inc
+++ b/buch/chapters/040-rekursion/Makefile.inc
@@ -9,6 +9,7 @@ CHAPTERFILES = $(CHAPTERFILES) \
chapters/040-rekursion/bohrmollerup.tex \
chapters/040-rekursion/integral.tex \
chapters/040-rekursion/beta.tex \
+ chapters/040-rekursion/betaverteilung.tex \
chapters/040-rekursion/linear.tex \
chapters/040-rekursion/hypergeometrisch.tex \
chapters/040-rekursion/uebungsaufgaben/401.tex \
diff --git a/buch/chapters/040-rekursion/beta.tex b/buch/chapters/040-rekursion/beta.tex
index ea847bc..ff59bad 100644
--- a/buch/chapters/040-rekursion/beta.tex
+++ b/buch/chapters/040-rekursion/beta.tex
@@ -3,11 +3,17 @@
%
% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
%
-\subsection{Die Beta-Funktion
-\label{buch:rekursion:gamma:subsection:beta}}
+\section{Die Beta-Funktion
+\label{buch:rekursion:gamma:section:beta}}
Die Eulersche Integralformel für die Gamma-Funktion in
-Definition~\ref{buch:rekursion:def:gamma} wurde bisher nicht
-gerechtfertigt.
+Definition~\ref{buch:rekursion:def:gamma} wurde in
+Abschnitt~\ref{buch:subsection:integral-eindeutig}
+mit dem Satz von Mollerup gerechtfertigt.
+Man kann Sie aber auch als Grenzfall der Beta-Funktion verstehen,
+die in diesem Abschnitt dargestellt wird.
+
+
+\subsection{Beta-Integral}
In diesem Abschnitt wird das Beta-Integral eingeführt, eine Funktion
von zwei Variablen, welches eine Integral-Definition mit einer
reichaltigen Menge von Rekursionsbeziehungen hat, die sich direkt auf
@@ -233,6 +239,16 @@ B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
berechnet werden.
\end{satz}
+%
+% Info über die Beta-Verteilung
+%
+\input{chapters/040-rekursion/betaverteilung.tex}
+
+\subsection{Weitere Eigenschaften der Gamma-Funktion}
+Die nahe Verwandtschaft der Gamma- mit der Beta-Funktion ermöglicht
+nun, weitere Eigenschaften der Gamma-Funktion mit Hilfe der Beta-Funktion
+herzuleiten.
+
\subsubsection{Nochmals der Wert von $\Gamma(\frac12)$?}
Der Wert von $\Gamma(\frac12)=\sqrt{\pi}$ wurde bereits in
\eqref{buch:rekursion:gamma:wert12}
@@ -484,83 +500,3 @@ Setzt man $x=\frac12$ in die Verdoppelungsformel ein, erhält man
in Übereinstimmung mit dem aus \eqref{buch:rekursion:gamma:gamma12}
bereits bekannten Wert.
-\subsubsection{Beta-Funktion und Binomialkoeffizienten}
-Die Binomialkoeffizienten können mit Hilfe der Fakultät als
-\begin{align*}
-\binom{n}{k}
-&=
-\frac{n!}{(n-k)!\,k!}
-\intertext{geschrieben werden.
-Drückt man die Fakultäten durch die Gamma-Funktion aus, erhält man}
-&=
-\frac{\Gamma(n+1)}{\Gamma(n-k+1)\Gamma(k+1)}.
-\intertext{Schreibt man $x=k-1$ und $y=n-k+1$, wird daraus
-wegen $x+y=k+1+n-k+1=n+2=(n+1)+1$}
-&=
-\frac{\Gamma(x+y-1)}{\Gamma(x)\Gamma(y)}.
-\intertext{Die Rekursionsformel für die Gamma-Funktion erlaubt,
-den Zähler umzuwandeln in $\Gamma(x+y-1)=\Gamma(x+y)/(x+y-1)$, so dass
-der Binomialkoeffizient schliesslich}
-&=
-\frac{\Gamma(x+y)}{(x+y-1)\Gamma(x)\Gamma(y)}
-=
-\frac{1}{(n-1)B(n-k+1,k+1)}
-\label{buch:rekursion:gamma:binombeta}
-\end{align*}
-geschrieben werden kann.
-Die Rekursionsbeziehung
-\[
-\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}
-\]
-der Binomialkoeffizienten erzeugt das vertraute Pascal-Dreieck,
-die Formel \eqref{buch:rekursion:gamma:binombeta} für die
-Binomialkoeffizienten macht daraus
-\[
-\frac{n-1}{B(n-k,k-1)}
-=
-\frac{n-2}{B(n-k,k-2)}
-+
-\frac{n-2}{B(n-k-1,k-1)},
-\]
-die für ganzzahlige Argumente gilt.
-Wir wollen nachrechnen, dass dies für beliebige Argumente gilt.
-\begin{align*}
-\frac{(n-1)\Gamma(n-1)}{\Gamma(n-k)\Gamma(k-1)}
-&=
-\frac{(n-2)\Gamma(n-2)}{\Gamma(n-k)\Gamma(k-2)}
-+
-\frac{(n-2)\Gamma(n-2)}{\Gamma(n-k-1)\Gamma(k-1)}
-\\
-\frac{\Gamma(n)}{\Gamma(n-k)\Gamma(k-1)}
-&=
-\frac{\Gamma(n-1)}{\Gamma(n-k)\Gamma(k-2)}
-+
-\frac{\Gamma(n-1)}{\Gamma(n-k-1)\Gamma(k-1)}
-\intertext{Durch Zusammenfassen der Faktoren im Zähler mit Hilfe
-der Rekursionsformel für die Gamma-Funktion und Multiplizieren
-mit dem gemeinsamen Nenner
-$\Gamma(n-k)\Gamma(k-1)=(n-k-1)\Gamma(n-k-1)(k-2)\Gamma(k-2)$ wird daraus}
-\Gamma(n)
-&=
-(k-2)
-\Gamma(n-1)
-+
-(n-k-1)
-\Gamma(n-1)
-\intertext{Indem wir die Rekursionsformel für die Gamma-Funktion auf
-die rechte Seite anwenden können wir erreichen, dass in allen Termen
-ein Faktor
-$\Gamma(n-1)$ auftritt:}
-(n-1)\Gamma(n-1)
-&=
-(k-2)\Gamma(n-1)
-+
-(n+k-1)\Gamma(n-1)
-\\
-n-1
-&=
-k-2
-+
-n-k-1
-\end{align*}
-
diff --git a/buch/chapters/040-rekursion/betaverteilung.tex b/buch/chapters/040-rekursion/betaverteilung.tex
new file mode 100644
index 0000000..979d04c
--- /dev/null
+++ b/buch/chapters/040-rekursion/betaverteilung.tex
@@ -0,0 +1,487 @@
+%
+% teil1.tex -- Beispiel-File für das Paper
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\subsection{Ordnungsstatistik und Beta-Funktion
+\label{buch:rekursion:ordnung:section:ordnungsstatistik}}
+\rhead{Ordnungsstatistik und Beta-Funktion}
+In diesem Abschnitt ist $X$ eine Zufallsvariable mit der Verteilungsfunktion
+$F_X(x)$, und $X_i$, $1\le i\le n$ sei ein Stichprobe von unabhängigen
+Zufallsvariablen, die wie $X$ verteilt sind.
+Ziel ist, die Verteilungsfunktion und die Wahrscheinlichkeitsdichte
+des grössten, zweitgrössten, $k$-t-grössten Wertes in der Stichprobe
+zu finden.
+Wir schreiben $[n]=\{1,\dots,n\}$ für die Menge der natürlichen
+Zahlen von zwischen $1$ und $n$.
+
+\subsubsection{Verteilung von $\operatorname{max}(X_1,\dots,X_n)$ und
+$\operatorname{min}(X_1,\dots,X_n)$
+\label{buch:rekursion:ordnung:subsection:minmax}}
+Die Verteilungsfunktion von $\operatorname{max}(X_1,\dots,X_n)$ hat
+den Wert
+\begin{align*}
+F_{\operatorname{max}(X_1,\dots,X_n)}(x)
+&=
+P(\operatorname{max}(X_1,\dots,X_n) \le x)
+\\
+&=
+P(X_1\le x\wedge \dots \wedge X_n\le x)
+\\
+&=
+P(X_1\le x) \cdot \ldots \cdot P(X_n\le x)
+\\
+&=
+P(X\le x)^n
+=
+F_X(x)^n.
+\end{align*}
+Für die Gleichverteilung ist
+\[
+F_{\text{equi}}(x)
+=
+\begin{cases}
+0&\qquad x< 0
+\\
+x&\qquad 0\le x\le 1
+\\
+1&\qquad 1<x.
+\end{cases}
+\]
+In diesem Fall ist Verteilung des Maximums
+\[
+F_{\operatorname{max}(X_1,\dots,X_n)}(x)
+=
+\begin{cases}
+0&\qquad x<0\\
+x^n&\qquad 0\le x\le 1\\
+1&\qquad 1 < x.
+\end{cases}
+\]
+Mit der zugehörigen Wahrscheinlichkeitsdichte
+\[
+\varphi_{\operatorname{max}(X_1,\dots,X_n)}
+=
+\frac{d}{dx}
+F_{\operatorname{max}(X_1,\dots,X_n)}(x)
+=
+\begin{cases}
+nx^{n-1}&\qquad 0\le x\le 1\\
+0 &\qquad \text{sonst}
+\end{cases}
+\]
+kann man zum Beispiel den Erwartungswert
+\[
+E(\operatorname{max}(X_1,\dots,X_n))
+=
+\int_{-\infty}^\infty
+x
+\varphi_{\operatorname{X_1,\dots,X_n}}(x)
+\,dx
+=
+\int_{0}^1 x\cdot nx^{n-1}\,dt
+=
+\biggl[
+\frac{n}{n+1}x^{n+1}
+\biggr]_0^1
+=
+\frac{n}{n+1}
+\]
+berechnen.
+
+Ganz analog kann man auch die Verteilungsfunktion von
+$\operatorname{min}(X_1,\dots,X_n)$ bestimmen.
+Sie ist
+\begin{align*}
+F_{\operatorname{min}(X_1,\dots,X_n)}(x)
+&=
+P(x\le X_1\vee \dots \vee x\le X_n)
+\\
+&=
+1-
+P(x > X_1\wedge \dots \wedge x > X_n)
+\\
+&=
+1-
+(1-P(x\le X_1)) \cdot\ldots\cdot (1-P(x\le X_n))
+\\
+&=
+1-(1-F_X(x))^n,
+\end{align*}
+Im Speziellen für im Intervall $[0,1]$ gleichverteilte $X_i$ ist die
+Verteilungsfunktion des Minimums
+\[
+F_{\operatorname{min}(X_1,\dots,X_n)}(x)
+=
+\begin{cases}
+0 &\qquad x<0 \\
+1-(1-x)^n&\qquad 0\le x\le 1\\
+1 &\qquad 1 < x
+\end{cases}
+\]
+mit Wahrscheinlichkeitsdichte
+\[
+\varphi_{\operatorname{min}(X_1,\dots,X_n)}
+=
+\frac{d}{dx}
+F_{\operatorname{min}(X_1,\dots,X_n)}
+=
+\begin{cases}
+n(1-x)^{n-1}&\qquad 0\le x\le 1\\
+0 &\qquad \text{sonst}
+\end{cases}
+\]
+und Erwartungswert
+\begin{align*}
+E(\operatorname{min}(X_1,\dots,X_n)
+&=
+\int_{-\infty}^\infty x\varphi_{\operatorname{min}(X_1,\dots,X_n)}(x)\,dx
+=
+\int_0^1 x\cdot n(1-x)^{n-1}\,dx
+\\
+&=
+\bigl[ -x(1-x)^n \bigr]_0^1 + \int_0^1 (1-x)^n\,dx
+=
+\biggl[
+-
+\frac{1}{n+1}
+(1-x)^{n+1}
+\biggr]_0^1
+=
+\frac{1}{n+1}.
+\end{align*}
+Es ergibt sich daraus als natürlich Verallgemeinerung die Frage nach
+der Verteilung des zweitegrössten oder zweitkleinsten Wertes unter den
+Werten $X_i$.
+
+\subsubsection{Der $k$-t-grösste Wert}
+Sie wieder $X_i$ eine Stichprobe von $n$ unabhängigen wie $X$ verteilten
+Zufallsvariablen.
+Diese werden jetzt der Grösse nach sortiert, die sortierten Werte werden
+mit
+\[
+X_{1:n} \le X_{2:n} \le \dots \le X_{(n-1):n} \le X_{n:n}
+\]
+bezeichnet.
+Die Grössen $X_{k:n}$ sind Zufallsvariablen, sie heissen die $k$-ten
+Ordnungsstatistiken.
+Die in Abschnitt~\ref{buch:rekursion:ordnung:subsection:minmax} behandelten Zufallsvariablen
+$\operatorname{min}(X_1,\dots,X_n)$
+und
+$\operatorname{max}(X_1,\dots,X_n)$
+sind die Fälle
+\begin{align*}
+X_{1:n} &= \operatorname{min}(X_1,\dots,X_n) \\
+X_{n:n} &= \operatorname{max}(X_1,\dots,X_n).
+\end{align*}
+
+Um den Wert der Verteilungsfunktion von $X_{k:n}$ zu berechnen, müssen wir
+die Wahrscheinlichkeit bestimmen, dass $k$ der $n$ Werte $X_i$ $x$ nicht
+übersteigen.
+Der $k$-te Wert $X_{k:n}$ übersteigt genau dann $x$ nicht, wenn
+mindestens $k$ der Zufallswerte $X_i$ $x$ nicht übersteigen, also
+\[
+P(X_{k:n} \le x)
+=
+P\left(
+|\{i\in[n]\,|\, X_i\le x\}| \ge k
+\right).
+\]
+
+Das Ereignis $\{X_i\le x\}$ ist eine Bernoulli-Experiment, welches mit
+Wahrscheinlichkeit $F_X(x)$ eintritt.
+Die Anzahl der Zufallsvariablen $X_i$, die $x$ übertreffen, ist also
+Binomialverteilt mit $p=F_X(x)$.
+Damit haben wir gefunden, dass mit Wahrscheinlichkeit
+\begin{equation}
+F_{X_{k:n}}(x)
+=
+P(X_{k:n}\le x)
+=
+\sum_{i=k}^n \binom{n}{i}F_X(x)^i (1-F_X(x))^{n-i}
+\label{buch:rekursion:ordnung:eqn:FXkn}
+\end{equation}
+mindestens $k$ der Zufallsvariablen den Wert $x$ überschreiten.
+
+\subsubsection{Wahrscheinlichkeitsdichte der Ordnungsstatistik}
+Die Wahrscheinlichkeitsdichte der Ordnungsstatistik kann durch Ableitung
+von \eqref{buch:rekursion:ordnung:eqn:FXkn} gefunden, werden, sie ist
+\begin{align*}
+\varphi_{X_{k:n}}(x)
+&=
+\frac{d}{dx}
+F_{X_{k:n}}(x)
+\\
+&=
+\sum_{i=k}^n
+\binom{n}{i}
+\bigl(
+iF_X(x)^{i-1}\varphi_X(x) (1-F_X(x))^{n-i}
+-
+F_X(x)^k
+(n-i)
+(1-F_X(x))^{n-i-1}
+\varphi_X(x)
+\bigr)
+\\
+&=
+\sum_{i=k}^n
+\binom{n}{i}
+\varphi_X(x)
+F_X(x)^{i-1}(1-F_X(x))^{n-i-1}
+\bigl(
+iF_X(x)-(n-i)(1-F_X(x))
+\bigr)
+\\
+&=
+\varphi_X(x)
+\biggl(
+\sum_{i=k}^n i\binom{n}{i} F_X(x)^{i-1}(1-F_X(x))^{n-i}
+-
+\sum_{j=k}^n (n-j)\binom{n}{j} F_X(x)^{j}(1-F_X(x))^{n-j-1}
+\biggr)
+\\
+&=
+\varphi_X(x)
+\biggl(
+\sum_{i=k}^n i\binom{n}{i} F_X(x)^{i-1}(1-F_X(x))^{n-i}
+-
+\sum_{i=k+1}^{n+1} (n-i+1)\binom{n}{i-1} F_X(x)^{i-1}(1-F_X(x))^{n-i}
+\biggr)
+\\
+&=
+\varphi_X(x)
+\biggl(
+k\binom{n}{k}F_X(x)^{k-1}(1-F_X(x))^{n-k}
++
+\sum_{i=k+1}^{n+1}
+\left(
+i\binom{n}{i}
+-
+(n-i+1)\binom{n}{i-1}
+\right)
+F_X(x)^{i-1}(1-F_X(x))^{n-i}
+\biggr)
+\end{align*}
+Mit den wohlbekannten Identitäten für die Binomialkoeffizienten
+\begin{align*}
+i\binom{n}{i}
+-
+(n-i+1)\binom{n}{i-1}
+&=
+n\binom{n-1}{i-1}
+-
+n
+\binom{n-1}{i-1}
+=
+0
+\end{align*}
+folgt jetzt
+\begin{align*}
+\varphi_{X_{k:n}}(x)
+&=
+\varphi_X(x)k\binom{n}{k} F_X(x)^{k-1}(1-F_X(x))^{n-k}(x).
+\intertext{Im Speziellen für gleichverteilte Zufallsvariablen $X_i$ ist
+}
+\varphi_{X_{k:n}}(x)
+&=
+k\binom{n}{k} x^{k-1}(1-x)^{n-k}.
+\end{align*}
+Dies ist die Wahrscheinlichkeitsdichte einer Betaverteilung
+\[
+\beta(k,n-k+1)(x)
+=
+\frac{1}{B(k,n-k+1)}
+x^{k-1}(1-x)^{n-k}.
+\]
+Tatsächlich ist die Normierungskonstante
+\begin{align}
+\frac{1}{B(k,n-k+1)}
+&=
+\frac{\Gamma(n+1)}{\Gamma(k)\Gamma(n-k+1)}
+=
+\frac{n!}{(k-1)!(n-k)!}.
+\label{buch:rekursion:ordnung:betaverteilung:normierung1}
+\end{align}
+Andererseits ist
+\[
+k\binom{n}{k}
+=
+k\frac{n!}{k!(n-k)!}
+=
+\frac{n!}{(k-1)!(n-k)!},
+\]
+in Übereinstimmung mit~\eqref{buch:rekursion:ordnung:betaverteilung:normierung1}.
+Die Verteilungsfunktion und die Wahrscheinlichkeitsdichte der
+Ordnungsstatistik sind in Abbildung~\ref{buch:rekursion:ordnung:fig:order} dargestellt.
+
+\begin{figure}
+\centering
+\includegraphics{chapters/040-rekursion/images/order.pdf}
+\caption{Verteilungsfunktion und Wahrscheinlichkeitsdichte der
+Ordnungsstatistiken $X_{k:n}$ einer gleichverteilung Zuvallsvariable
+mit $n=10$.
+\label{buch:rekursion:ordnung:fig:order}}
+\end{figure}
+
+%
+% Die Beta-Funktion
+%
+\subsection{Die Beta-Verteilung
+\label{buch:rekursion:subsection:beta-verteilung}}
+Die Wahrscheinlichkeitsdichte, die im
+Abschnitt~\ref{buch:rekursion:ordnung:section:ordnungsstatistik}
+gefunden worden ist, ist nicht nur für ganzzahlige Exponenten
+definiert.
+
+\begin{figure}
+\centering
+\includegraphics[width=0.92\textwidth]{chapters/040-rekursion/images/beta.pdf}
+\caption{Wahrscheinlichkeitsdichte der Beta-Verteilung
+$\beta(a,b,x)$
+für verschiedene Werte der Parameter $a$ und $b$.
+Die Werte des Parameters für einen Graphen einer Beta-Verteilung
+sind im kleinen Quadrat rechts im Graphen
+als Punkt mit der gleichen Farbe dargestellt.
+\label{buch:rekursion:ordnung:fig:betaverteilungn}}
+\end{figure}
+
+\begin{definition}
+Die Beta-Verteilung ist die Verteilung mit der Wahrscheinlichkeitsdichte
+\[
+\beta_{a,b}(x)
+=
+\begin{cases}
+\displaystyle
+\frac{1}{B(a,b)}
+x^{a-1}(1-x)^{b-1}&\qquad 0\le x \le 1\\
+0&\qquad\text{sonst.}
+\end{cases}
+\]
+\end{definition}
+
+Die Beta-Funktion ist also die Normierungskonstante der Beta-Verteilung.
+Die wichtigsten Kennzahlen der Beta-Verteilung wie Erwartungswert und
+Varianz lassen sich alle ebenfalls als Werte der Beta-Funktion ausdrücken.
+
+\subsubsection{Erwartungswert}
+Mit der Wahrscheinlichkeitsdichte kann man jetzt auch den Erwartungswerte
+der $k$-ten Ordnungsstatistik bestimmen.
+Die Rechnung ergibt:
+\begin{align*}
+E(X_{k:n})
+&=
+\int_0^1 x\cdot k\binom{n}{k} x^{k-1}(1-x)^{n-k}\,dx
+=
+k
+\binom{n}{k}
+\int_0^1
+x^{k}(1-x)^{n-k}\,dx.
+\intertext{Dies ist das Beta-Integral}
+&=
+k\binom{n}{k}
+B(k+1,n-k+1)
+\intertext{welches man durch Gamma-Funktionen bzw.~durch Fakultäten wie in}
+&=
+k\frac{n!}{k!(n-k)!}
+\frac{\Gamma(k+1)\Gamma(n-k+1)}{n+2}
+=
+k\frac{n!}{k!(n-k)!}
+\frac{k!(n-k)!}{(n+1)!}
+=
+\frac{k}{n+1}
+\end{align*}
+ausdrücken kann.
+Die Erwartungswerte haben also regelmässige Abstände, sie sind in
+Abbildung~\ref{buch:rekursion:ordnung:fig:order} als blaue vertikale Linien eingezeichnet.
+
+Für die Beta-Verteilung lässt sich die Rechnung noch allgemeiner
+durchführen.
+Der Erwartungswert einer $\beta_{a,b}$-verteilten Zufallsvariablen $X$
+ist
+\begin{align*}
+E(X)
+&=
+\int_0^1 x \beta_{a,b}(x)\,dx
+=
+\frac{1}{B(a,b)}
+\int_0^1 x\cdot x^{a-1}(1-x)^{b-1}\,dx
+=
+\frac{B(a+1,b)}{B(a,b)}
+=
+\frac{a}{a+b}.
+\end{align*}
+Durch Einsetzen von $a=k+1$ und $b=n-k+1$ lassen sich die für die
+Ordnungsstatistik berechneten Werte wiederfinden.
+
+\subsubsection{Varianz}
+Auch die Varianz lässt sich einfach berechnen, dazu muss zunächst
+der Erwartungswert von $X_{k:n}^2$ bestimmt werden.
+Er ist
+\begin{align*}
+E(X_{k:n}^2)
+&=
+\int_0^1 x^2\cdot k\binom{n}{k} x^{k-1}(1-x)^{n-k}\,dx
+=
+k
+\binom{n}{k}
+\int_0^1
+x^{k+1}(1-x)^{n-k}\,dx.
+\intertext{Auch dies ist ein Beta-Integral, nämlich}
+&=
+k\binom{n}{k}
+B(k+2,n-k+1)
+=
+k\frac{n!}{k!(n-k)!}
+\frac{(k+1)!(n-k)!}{(n+2)!}
+=
+\frac{k(k+1)}{(n+1)(n+2)}.
+\end{align*}
+Die Varianz wird damit
+\begin{align}
+\operatorname{var}(X_{k:n})
+&=
+E(X_{k:n}^2) - E(X_{k:n})^2
+\notag
+\\
+&
+=
+\frac{k(k+1)}{(n+1)(n+2)}-\frac{k^2}{(n+1)^2}
+=
+\frac{k(k+1)(n+1)-k^2(n+2)}{(n+1)^2(n+2)}
+=
+\frac{k(n-k+1)}{(n+1)^2(n+2)}.
+\label{buch:rekursion:ordnung:eqn:ordnungsstatistik:varianz}
+\end{align}
+In Abbildung~\ref{buch:rekursion:ordnung:fig:order} ist die Varianz der
+Ordnungsstatistik $X_{k:n}$ für $k=7$ und $n=10$ als oranges
+Rechteck dargestellt.
+
+Auch die Varianz kann ganz allgemein für die Beta-Verteilung
+bestimmt werden.
+Dazu berechnen wir zunächst
+\begin{align*}
+E(X^2)
+&=
+\frac{1}{B(a,b)}
+\int_0^1
+x^2\cdot x^{a-1}(1-y)^{b-1}\,dx
+=
+\frac{B(a+2,b)}{B(a,b)}.
+\end{align*}
+Daraus folgt dann
+\[
+\operatorname{var}(X)
+=
+E(X^2)-E(X)^2
+=
+\frac{B(a+2,b)B(a,b)-B(a+1,b)^2}{B(a,b)^2}.
+\]
+
+Die Formel~\eqref{buch:rekursion:ordnung:eqn:ordnungsstatistik:varianz}
+besagt auch, dass die Varianz der proportional ist zu $k((n+1)-k)$.
+Dieser Ausdruck ist am grössten für $k=(n+1)/2$, die Varianz ist
+also grösser für die ``mittleren'' Ordnungstatistiken als für die
+extremen $X_{1:n}=\operatorname{min}(X_1,\dots,X_n)$ und
+$X_{n:n}=\operatorname{max}(X_1,\dots,X_n)$.
+
diff --git a/buch/chapters/040-rekursion/images/Makefile b/buch/chapters/040-rekursion/images/Makefile
index 9608a94..86dfa1e 100644
--- a/buch/chapters/040-rekursion/images/Makefile
+++ b/buch/chapters/040-rekursion/images/Makefile
@@ -3,7 +3,7 @@
#
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-all: gammaplot.pdf fibonacci.pdf
+all: gammaplot.pdf fibonacci.pdf order.pdf beta.pdf
gammaplot.pdf: gammaplot.tex gammapaths.tex
pdflatex gammaplot.tex
@@ -16,3 +16,17 @@ fibonaccigrid.tex: fibonacci.m
fibonacci.pdf: fibonacci.tex fibonaccigrid.tex
pdflatex fibonacci.tex
+
+order.pdf: order.tex orderpath.tex
+ pdflatex order.tex
+
+orderpath.tex: order.m
+ octave order.m
+
+beta.pdf: beta.tex betapaths.tex
+ pdflatex beta.tex
+
+betapaths.tex: betadist.m
+ octave betadist.m
+
+
diff --git a/buch/chapters/040-rekursion/images/beta.pdf b/buch/chapters/040-rekursion/images/beta.pdf
new file mode 100644
index 0000000..0e6567b
--- /dev/null
+++ b/buch/chapters/040-rekursion/images/beta.pdf
Binary files differ
diff --git a/buch/chapters/040-rekursion/images/beta.tex b/buch/chapters/040-rekursion/images/beta.tex
new file mode 100644
index 0000000..1e1a1b3
--- /dev/null
+++ b/buch/chapters/040-rekursion/images/beta.tex
@@ -0,0 +1,236 @@
+%
+% beta.tex -- display some symmetric beta distributions
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math,calc}
+\input{betapaths.tex}
+\begin{document}
+\def\skala{12}
+\definecolor{colorone}{rgb}{1.0,0.6,0.0}
+\definecolor{colortwo}{rgb}{1.0,0.0,0.0}
+\definecolor{colorthree}{rgb}{0.6,0.0,0.6}
+\definecolor{colorfour}{rgb}{0.6,0.0,1.0}
+\definecolor{colorfive}{rgb}{0.0,0.0,1.0}
+\definecolor{colorsix}{rgb}{0.4,0.6,1.0}
+\definecolor{colorseven}{rgb}{0.0,0.0,0.0}
+\definecolor{coloreight}{rgb}{0.0,0.8,0.8}
+\definecolor{colornine}{rgb}{0.0,0.8,0.2}
+\definecolor{colorten}{rgb}{0.2,0.4,0.0}
+\definecolor{coloreleven}{rgb}{0.6,1.0,0.0}
+\definecolor{colortwelve}{rgb}{1.0,0.8,0.4}
+
+\def\achsen{
+ \foreach \x in {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}{
+ \draw ({\x*\dx},{-0.1/\skala}) -- ({\x*\dx},{0.1/\skala});
+ \node at ({\x*\dx},{-0.1/\skala}) [below] {$\x$};
+ }
+ \foreach \y in {1,2,3,4}{
+ \draw ({-0.1/\skala},{\y*\dy}) -- ({0.1/\skala},{\y*\dy});
+ \node at ({-0.1/\skala},{\y*\dy}) [left] {$\y$};
+ }
+ \def\x{1}
+ \draw ({\x*\dx},{-0.1/\skala}) -- ({\x*\dx},{0.1/\skala});
+ \node at ({\x*\dx},{-0.1/\skala}) [below] {$\x$};
+ \def\x{0}
+ \node at ({\x*\dx},{-0.1/\skala}) [below] {$\x$};
+
+ \draw[->] ({-0.1/\skala},0) -- ({1*\dx+0.4/\skala},0)
+ coordinate[label={$x$}];
+ \draw[->] (0,{-0.1/\skala}) -- (0,{\betamax*\dy+0.4/\skala},0)
+ coordinate[label={right:$\beta(a,b,x)$}];
+}
+
+\def\farbcoord#1#2{
+ ({\dx*(0.63+((#1)/5)*0.27)},{\dx*(0.18+((#2)/5)*0.27)})
+}
+\def\farbviereck{
+ \foreach \x in {1,2,3,4}{
+ \draw[color=gray!30] \farbcoord{\x}{0} -- \farbcoord{\x}{4};
+ \draw[color=gray!30] \farbcoord{0}{\x} -- \farbcoord{4}{\x};
+ }
+ \draw[->] \farbcoord{0}{0} -- \farbcoord{4.4}{0}
+ coordinate[label={$a$}];
+ \draw[->] \farbcoord{0}{0} -- \farbcoord{0}{4.4}
+ coordinate[label={left: $b$}];
+ \foreach \x in {1,2,3,4}{
+ \node[color=gray] at \farbcoord{4}{\x} [right] {\tiny $b=\x$};
+ %\fill[color=white,opacity=0.7]
+ % \farbcoord{(\x-0.1)}{3.3}
+ % rectangle
+ % \farbcoord{(\x+0.1)}{4};
+ \node[color=gray] at \farbcoord{\x}{4} [right,rotate=90]
+ {\tiny $a=\x$};
+ }
+}
+\def\farbpunkt#1#2#3{
+ \fill[color=#3] \farbcoord{#1}{#2} circle[radius={0.1/\skala}];
+}
+
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\def\dx{1.15}
+\def\dy{0.1}
+\def\opa{0.1}
+
+\def\betamax{4.9}
+
+\begin{scope}
+\clip (0,0) rectangle ({1*\dx},{\betamax*\dy});
+\fill[color=colorone,opacity=\opa] (0,0) -- \betaaa -- (\dx,0) -- cycle;
+\fill[color=colortwo,opacity=\opa] (0,0) -- \betabb -- (\dx,0) -- cycle;
+\fill[color=colorthree,opacity=\opa] (0,0) -- \betacc -- (\dx,0) -- cycle;
+\fill[color=colorfour,opacity=\opa] (0,0) -- \betadd -- (\dx,0) -- cycle;
+\fill[color=colorfive,opacity=\opa] (0,0) -- \betaee -- (\dx,0) -- cycle;
+\fill[color=colorsix,opacity=\opa] (0,0) -- \betaff -- (\dx,0) -- cycle;
+\fill[color=colorseven,opacity=\opa] (0,0) -- \betagg -- (\dx,0) -- cycle;
+\fill[color=coloreight,opacity=\opa] (0,0) -- \betahh -- (\dx,0) -- cycle;
+\fill[color=colornine,opacity=\opa] (0,0) -- \betaii -- (\dx,0) -- cycle;
+\fill[color=colorten,opacity=\opa] (0,0) -- \betajj -- (\dx,0) -- cycle;
+\fill[color=coloreleven,opacity=\opa] (0,0) -- \betakk -- (\dx,0) -- cycle;
+\fill[color=colortwelve,opacity=\opa] (0,0) -- \betall -- (\dx,0) -- cycle;
+
+\draw[color=colorone] \betaaa;
+\draw[color=colortwo] \betabb;
+\draw[color=colorthree] \betacc;
+\draw[color=colorfour] \betadd;
+\draw[color=colorfive] \betaee;
+\draw[color=colorsix] \betaff;
+\draw[color=colorseven] \betagg;
+\draw[color=coloreight] \betahh;
+\draw[color=colornine] \betaii;
+\draw[color=colorten] \betajj;
+\draw[color=coloreleven] \betakk;
+\draw[color=colortwelve] \betall;
+
+\end{scope}
+
+\achsen
+
+\farbviereck
+
+\farbpunkt{\alphatwelve}{\betatwelve}{colortwelve}
+\farbpunkt{\alphaeleven}{\betaeleven}{coloreleven}
+\farbpunkt{\alphaten}{\betaten}{colorten}
+\farbpunkt{\alphanine}{\betanine}{colornine}
+\farbpunkt{\alphaeight}{\betaeight}{coloreight}
+\farbpunkt{\alphaseven}{\betaseven}{colorseven}
+\farbpunkt{\alphasix}{\betasix}{colorsix}
+\farbpunkt{\alphafive}{\betafive}{colorfive}
+\farbpunkt{\alphafour}{\betafour}{colorfour}
+\farbpunkt{\alphathree}{\betathree}{colorthree}
+\farbpunkt{\alphatwo}{\betatwo}{colortwo}
+\farbpunkt{\alphaone}{\betaone}{colorone}
+
+
+\def\betamax{4.9}
+
+\begin{scope}[yshift=-0.6cm]
+
+\begin{scope}
+\clip (0,0) rectangle ({1*\dx},{\betamax*\dy});
+\fill[color=colorone,opacity=\opa] (0,0) -- \betaea -- (\dx,0) -- cycle;
+\fill[color=colortwo,opacity=\opa] (0,0) -- \betaeb -- (\dx,0) -- cycle;
+\fill[color=colorthree,opacity=\opa] (0,0) -- \betaec -- (\dx,0) -- cycle;
+\fill[color=colorfour,opacity=\opa] (0,0) -- \betaed -- (\dx,0) -- cycle;
+\fill[color=colorfive,opacity=\opa] (0,0) -- \betaee -- (\dx,0) -- cycle;
+\fill[color=colorsix,opacity=\opa] (0,0) -- \betaef -- (\dx,0) -- cycle;
+\fill[color=colorseven,opacity=\opa] (0,0) -- \betaeg -- (\dx,0) -- cycle;
+\fill[color=coloreight,opacity=\opa] (0,0) -- \betaeh -- (\dx,0) -- cycle;
+\fill[color=colornine,opacity=\opa] (0,0) -- \betaei -- (\dx,0) -- cycle;
+\fill[color=colorten,opacity=\opa] (0,0) -- \betaej -- (\dx,0) -- cycle;
+\fill[color=coloreleven,opacity=\opa] (0,0) -- \betaek -- (\dx,0) -- cycle;
+\fill[color=colortwelve,opacity=\opa] (0,0) -- \betael -- (\dx,0) -- cycle;
+
+\draw[color=colorone] \betaea;
+\draw[color=colortwo] \betaeb;
+\draw[color=colorthree] \betaec;
+\draw[color=colorfour] \betaed;
+\draw[color=colorfive] \betaee;
+\draw[color=colorsix] \betaef;
+\draw[color=colorseven] \betaeg;
+\draw[color=coloreight] \betaeh;
+\draw[color=colornine] \betaei;
+\draw[color=colorten] \betaej;
+\draw[color=coloreleven] \betaek;
+\draw[color=colortwelve] \betael;
+\end{scope}
+
+\achsen
+
+\farbviereck
+
+\farbpunkt{\alphafive}{\betatwelve}{colortwelve}
+\farbpunkt{\alphafive}{\betaeleven}{coloreleven}
+\farbpunkt{\alphafive}{\betaten}{colorten}
+\farbpunkt{\alphafive}{\betanine}{colornine}
+\farbpunkt{\alphafive}{\betaeight}{coloreight}
+\farbpunkt{\alphafive}{\betaseven}{colorseven}
+\farbpunkt{\alphafive}{\betasix}{colorsix}
+\farbpunkt{\alphafive}{\betafive}{colorfive}
+\farbpunkt{\alphafive}{\betafour}{colorfour}
+\farbpunkt{\alphafive}{\betathree}{colorthree}
+\farbpunkt{\alphafive}{\betatwo}{colortwo}
+\farbpunkt{\alphafive}{\betaone}{colorone}
+
+\end{scope}
+
+\begin{scope}[yshift=-1.2cm]
+
+\begin{scope}
+\clip (0,0) rectangle ({1*\dx},{\betamax*\dy});
+\fill[color=colorone,opacity=\opa] (0,0) -- \betaal -- (\dx,0) -- cycle;
+\fill[color=colortwo,opacity=\opa] (0,0) -- \betabl -- (\dx,0) -- cycle;
+\fill[color=colorthree,opacity=\opa] (0,0) -- \betacl -- (\dx,0) -- cycle;
+\fill[color=colorfour,opacity=\opa] (0,0) -- \betadl -- (\dx,0) -- cycle;
+\fill[color=colorfive,opacity=\opa] (0,0) -- \betael -- (\dx,0) -- cycle;
+\fill[color=colorsix,opacity=\opa] (0,0) -- \betafl -- (\dx,0) -- cycle;
+\fill[color=colorseven,opacity=\opa] (0,0) -- \betagl -- (\dx,0) -- cycle;
+\fill[color=coloreight,opacity=\opa] (0,0) -- \betahl -- (\dx,0) -- cycle;
+\fill[color=colornine,opacity=\opa] (0,0) -- \betail -- (\dx,0) -- cycle;
+\fill[color=colorten,opacity=\opa] (0,0) -- \betajl -- (\dx,0) -- cycle;
+\fill[color=coloreleven,opacity=\opa] (0,0) -- \betakl -- (\dx,0) -- cycle;
+\fill[color=colortwelve,opacity=\opa] (0,0) -- \betall -- (\dx,0) -- cycle;
+
+\draw[color=colorone] \betaal;
+\draw[color=colortwo] \betabl;
+\draw[color=colorthree] \betacl;
+\draw[color=colorfour] \betadl;
+\draw[color=colorfive] \betael;
+\draw[color=colorsix] \betafl;
+\draw[color=colorseven] \betagl;
+\draw[color=coloreight] \betahl;
+\draw[color=colornine] \betail;
+\draw[color=colorten] \betajl;
+\draw[color=coloreleven] \betakl;
+\draw[color=colortwelve] \betall;
+\end{scope}
+
+\achsen
+
+\farbviereck
+
+\farbpunkt{\alphatwelve}{\betatwelve}{colortwelve}
+\farbpunkt{\alphaeleven}{\betatwelve}{coloreleven}
+\farbpunkt{\alphaten}{\betatwelve}{colorten}
+\farbpunkt{\alphanine}{\betatwelve}{colornine}
+\farbpunkt{\alphaeight}{\betatwelve}{coloreight}
+\farbpunkt{\alphaseven}{\betatwelve}{colorseven}
+\farbpunkt{\alphasix}{\betatwelve}{colorsix}
+\farbpunkt{\alphafive}{\betatwelve}{colorfive}
+\farbpunkt{\alphafour}{\betatwelve}{colorfour}
+\farbpunkt{\alphathree}{\betatwelve}{colorthree}
+\farbpunkt{\alphatwo}{\betatwelve}{colortwo}
+\farbpunkt{\alphaone}{\betatwelve}{colorone}
+
+\end{scope}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/040-rekursion/images/betadist.m b/buch/chapters/040-rekursion/images/betadist.m
new file mode 100644
index 0000000..5b466a6
--- /dev/null
+++ b/buch/chapters/040-rekursion/images/betadist.m
@@ -0,0 +1,58 @@
+#
+# betadist.m
+#
+# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+global N;
+N = 201;
+global nmin;
+global nmax;
+nmin = -4;
+nmax = 7;
+n = nmax - nmin + 1
+A = 3;
+
+t = (nmin:nmax) / nmax;
+alpha = 1 + A * t .* abs(t)
+#alpha(1) = 0.01;
+
+#alpha = [ 1, 1.03, 1.05, 1.1, 1.25, 1.5, 2, 2.5, 3, 4, 5 ];
+beta = alpha;
+names = [ "one"; "two"; "three"; "four"; "five"; "six"; "seven"; "eight";
+ "nine"; "ten"; "eleven"; "twelve" ]
+
+function retval = Beta(a, b, x)
+ retval = x^(a-1) * (1-x)^(b-1) / beta(a, b);
+ if (retval > 100)
+ retval = 100
+ end
+end
+
+function plotbeta(fn, a, b, name)
+ global N;
+ fprintf(fn, "\\def\\beta%s{\n", strtrim(name));
+ fprintf(fn, "\t({%.4f*\\dx},{%.4f*\\dy})", 0, Beta(a, b, 0));
+ for x = (1:N-1)/(N-1)
+ X = (1-cos(pi * x))/2;
+ fprintf(fn, "\n\t--({%.4f*\\dx},{%.4f*\\dy})",
+ X, Beta(a, b, X));
+ end
+ fprintf(fn, "\n}\n");
+end
+
+fn = fopen("betapaths.tex", "w");
+
+for i = (1:n)
+ fprintf(fn, "\\def\\alpha%s{%f}\n", strtrim(names(i,:)), alpha(i));
+ fprintf(fn, "\\def\\beta%s{%f}\n", strtrim(names(i,:)), beta(i));
+end
+
+for i = (1:n)
+ for j = (1:n)
+ printf("working on %d,%d:\n", i, j);
+ plotbeta(fn, alpha(i), beta(j),
+ char(['a' + i - 1, 'a' + j - 1]));
+ end
+end
+
+fclose(fn);
diff --git a/buch/chapters/040-rekursion/images/order.m b/buch/chapters/040-rekursion/images/order.m
new file mode 100644
index 0000000..762f458
--- /dev/null
+++ b/buch/chapters/040-rekursion/images/order.m
@@ -0,0 +1,119 @@
+#
+# order.m
+#
+# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+global N;
+N = 10;
+global subdivisions;
+subdivisions = 100;
+global P;
+P = 0.5
+
+function retval = orderF(p, n, k)
+ retval = 0;
+ for i = (k:n)
+ retval = retval + nchoosek(n,i) * p^i * (1-p)^(n-i);
+ end
+end
+
+function retval = orderd(p, n, k)
+ retval = 0;
+ for i = (k:n)
+ s = i * p^(i-1) * (1-p)^(n-i);
+ s = s - p^i * (n-i) * (1-p)^(n-i-1);
+ retval = retval + nchoosek(n,i) * s;
+ end
+end
+
+function retval = orders(p, n, k)
+ retval = k * nchoosek(n, k) * p^(k-1) * (1-p)^(n-k);
+end
+
+function orderpath(fn, k, name)
+ fprintf(fn, "\\def\\order%s{\n\t(0,0)", name);
+ global N;
+ global subdivisions;
+ for i = (0:subdivisions)
+ p = i/subdivisions;
+ fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})",
+ p, orderF(p, N, k));
+ end
+ fprintf(fn, "\n}\n");
+end
+
+function orderdpath(fn, k, name)
+ fprintf(fn, "\\def\\orderd%s{\n\t(0,0)", name);
+ global N;
+ global subdivisions;
+ for i = (1:subdivisions-1)
+ p = i/subdivisions;
+ fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})",
+ p, orderd(p, N, k));
+ end
+ fprintf(fn, "\n\t-- ({1*\\dx},0)");
+ fprintf(fn, "\n}\n");
+end
+
+function orderspath(fn, k, name)
+ fprintf(fn, "\\def\\orders%s{\n\t(0,0)", name);
+ global N;
+ global subdivisions;
+ for i = (1:subdivisions-1)
+ p = i/subdivisions;
+ fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})",
+ p, orders(p, N, k));
+ end
+ fprintf(fn, "\n\t-- ({1*\\dx},0)");
+ fprintf(fn, "\n}\n");
+end
+
+fn = fopen("orderpath.tex", "w");
+
+orderpath(fn, 0, "zero");
+orderdpath(fn, 0, "zero");
+orderspath(fn, 0, "zero");
+
+orderpath(fn, 1, "one");
+orderdpath(fn, 1, "one");
+orderspath(fn, 1, "one");
+
+orderpath(fn, 2, "two");
+orderdpath(fn, 2, "two");
+orderspath(fn, 2, "two");
+
+orderpath(fn, 3, "three");
+orderdpath(fn, 3, "three");
+orderspath(fn, 3, "three");
+
+orderpath(fn, 4, "four");
+orderdpath(fn, 4, "four");
+orderspath(fn, 4, "four");
+
+orderpath(fn, 5, "five");
+orderdpath(fn, 5, "five");
+orderspath(fn, 5, "five");
+
+orderpath(fn, 6, "six");
+orderdpath(fn, 6, "six");
+orderspath(fn, 6, "six");
+
+orderpath(fn, 7, "seven");
+orderdpath(fn, 7, "seven");
+orderspath(fn, 7, "seven");
+
+orderpath(fn, 8, "eight");
+orderdpath(fn, 8, "eight");
+orderspath(fn, 8, "eight");
+
+orderpath(fn, 9, "nine");
+orderdpath(fn, 9, "nine");
+orderspath(fn, 9, "nine");
+
+orderpath(fn, 10, "ten");
+orderdpath(fn, 10, "ten");
+orderspath(fn, 10, "ten");
+
+fclose(fn);
+
+
diff --git a/buch/chapters/040-rekursion/images/order.pdf b/buch/chapters/040-rekursion/images/order.pdf
new file mode 100644
index 0000000..cc175a9
--- /dev/null
+++ b/buch/chapters/040-rekursion/images/order.pdf
Binary files differ
diff --git a/buch/chapters/040-rekursion/images/order.tex b/buch/chapters/040-rekursion/images/order.tex
new file mode 100644
index 0000000..9a2511c
--- /dev/null
+++ b/buch/chapters/040-rekursion/images/order.tex
@@ -0,0 +1,125 @@
+%
+% order.tex -- Verteilungsfunktion für Ordnungsstatistik
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{8}
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+
+\def\n{10}
+\def\E#1#2{
+ \draw[color=#2]
+ ({\dx*#1/(\n+1)},{-0.1/\skala}) -- ({\dx*#1/(\n+1)},{4.4*\dy});
+ \node[color=#2] at ({\dx*#1/(\n+1)},{3.2*\dy})
+ [rotate=90,above right] {$k=#1$};
+}
+\def\var#1#2{
+ \pgfmathparse{\dx*sqrt(#1*(\n-#1+1)/((\n+1)*(\n+1)*(\n+2)))}
+ \xdef\var{\pgfmathresult}
+ \fill[color=#2,opacity=0.5]
+ ({\dx*#1/(\n+1)-\var},0) rectangle ({\dx*#1/(\n+1)+\var},{4.4*\dy});
+}
+
+\input{orderpath.tex}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\def\dx{1.6}
+\def\dy{0.5}
+
+\def\pfad#1#2{
+\draw[color=#2,line width=1.4pt] ({-0.1/\skala},0)
+ --
+ #1
+ --
+ ({1*\dx+0.1/\skala},0.5);
+}
+
+\pfad{\orderzero}{darkgreen!20}
+\pfad{\orderone}{darkgreen!20}
+\pfad{\ordertwo}{darkgreen!20}
+\pfad{\orderthree}{darkgreen!20}
+\pfad{\orderfour}{darkgreen!20}
+\pfad{\orderfive}{darkgreen!20}
+\pfad{\ordersix}{darkgreen!20}
+\pfad{\ordereight}{darkgreen!20}
+\pfad{\ordernine}{darkgreen!20}
+\pfad{\orderten}{darkgreen!20}
+\pfad{\orderseven}{darkgreen}
+
+\draw[->] ({-0.1/\skala},0) -- ({1.03*\dx},0) coordinate[label={$x$}];
+\draw[->] (0,{-0.1/\skala}) -- (0,0.6) coordinate[label={right:$F(X)$}];
+\foreach \x in {0,0.2,0.4,0.6,0.8,1}{
+ \draw ({\x*\dx},{-0.1/\skala}) -- ({\x*\dx},{0.1/\skala});
+ \node at ({\x*\dx},{-0.1/\skala}) [below] {$\x$};
+}
+\foreach \y in {0.5,1}{
+ \draw ({-0.1/\skala},{\y*\dy}) -- ({0.1/\skala},{\y*\dy});
+ \node at ({-0.1/\skala},{\y*\dy}) [left] {$\y$};
+}
+
+\node[color=darkgreen] at (0.65,{0.5*\dy}) [above,rotate=55] {$k=7$};
+
+\begin{scope}[yshift=-0.7cm]
+\def\dy{0.125}
+
+\foreach \k in {1,2,3,4,5,6,8,9,10}{
+ \E{\k}{blue!30}
+}
+\def\k{7}
+\var{\k}{orange!40}
+\node[color=blue] at ({\dx*\k/(\n+1)},{4.3*\dy}) [above] {$E(X_{7:n})$};
+
+\def\pfad#1#2{
+ \draw[color=#2,line width=1.4pt] ({-0.1/\skala},0)
+ --
+ #1
+ --
+ ({1*\dx+0.1/\skala},0.0);
+}
+
+\begin{scope}
+\clip ({-0.1/\skala},{-0.1/\skala})
+ rectangle ({1*\dx+0.1/\skala},{0.56+0.1/\skala});
+
+\pfad{\orderdzero}{red!20}
+\pfad{\orderdone}{red!20}
+\pfad{\orderdtwo}{red!20}
+\pfad{\orderdthree}{red!20}
+\pfad{\orderdfour}{red!20}
+\pfad{\orderdfive}{red!20}
+\pfad{\orderdsix}{red!20}
+\pfad{\orderdeight}{red!20}
+\pfad{\orderdnine}{red!20}
+\pfad{\orderdten}{red!20}
+\E{\k}{blue}
+\pfad{\orderdseven}{red}
+
+\end{scope}
+
+\draw[->] ({-0.1/\skala},0) -- ({1.03*\dx},0) coordinate[label={$x$}];
+\draw[->] (0,{-0.1/\skala}) -- (0,0.6) coordinate[label={right:$\varphi(X)$}];
+\foreach \x in {0,0.2,0.4,0.6,0.8,1}{
+ \draw ({\x*\dx},{-0.1/\skala}) -- ({\x*\dx},{0.1/\skala});
+ \node at ({\x*\dx},{-0.1/\skala}) [below] {$\x$};
+}
+\foreach \y in {1,2,3,4}{
+ \draw ({-0.1/\skala},{\y*\dy}) -- ({0.1/\skala},{\y*\dy});
+ \node at ({-0.1/\skala},{\y*\dy}) [left] {$\y$};
+}
+
+\node[color=red] at ({0.67*\dx},{2.7*\dy}) [above] {$k=7$};
+
+
+\end{scope}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/070-orthogonalitaet/Makefile.inc b/buch/chapters/070-orthogonalitaet/Makefile.inc
index 48e5356..286ab2e 100644
--- a/buch/chapters/070-orthogonalitaet/Makefile.inc
+++ b/buch/chapters/070-orthogonalitaet/Makefile.inc
@@ -13,4 +13,5 @@ CHAPTERFILES = $(CHAPTERFILES) \
chapters/070-orthogonalitaet/jacobi.tex \
chapters/070-orthogonalitaet/sturm.tex \
chapters/070-orthogonalitaet/gaussquadratur.tex \
+ chapters/070-orthogonalitaet/uebungsaufgaben/701.tex \
chapters/070-orthogonalitaet/chapter.tex
diff --git a/buch/chapters/070-orthogonalitaet/chapter.tex b/buch/chapters/070-orthogonalitaet/chapter.tex
index 5ebb795..4756844 100644
--- a/buch/chapters/070-orthogonalitaet/chapter.tex
+++ b/buch/chapters/070-orthogonalitaet/chapter.tex
@@ -25,7 +25,7 @@
\rhead{Übungsaufgaben}
\aufgabetoplevel{chapters/070-orthogonalitaet/uebungsaufgaben}
\begin{uebungsaufgaben}
-%\uebungsaufgabe{0}
+\uebungsaufgabe{701}
%\uebungsaufgabe{1}
\end{uebungsaufgaben}
diff --git a/buch/chapters/070-orthogonalitaet/gaussquadratur.tex b/buch/chapters/070-orthogonalitaet/gaussquadratur.tex
index 55f9700..acfdb1a 100644
--- a/buch/chapters/070-orthogonalitaet/gaussquadratur.tex
+++ b/buch/chapters/070-orthogonalitaet/gaussquadratur.tex
@@ -135,12 +135,12 @@ p(x)&=x^2\colon& \frac23 &= A_0x_0^2 + A_1x_1^2\\
p(x)&=x^3\colon& 0 &= A_0x_0^3 + A_1x_1^3.
\end{aligned}
\]
-Dividiert man die zweite und vierte Gleichung in der Form
+Dividiert man die vierte durch die zweite Gleichung in der Form
\[
\left.
\begin{aligned}
-A_0x_0 &= -A_1x_1\\
-A_0x_0^2 &= -A_1x_1^2
+A_0x_0^3 &= -A_1x_1^3 &\qquad&\text{(vierte Gleichung)}\\
+A_0x_0 &= -A_1x_1 &\qquad&\text{(zweite Gleichung)}
\end{aligned}
\quad
\right\}
@@ -155,7 +155,7 @@ x_1=-x_0.
\]
Indem wir dies in die zweite Gleichung einsetzen, finden wir
\[
-0 = A_0x_0 + A_1x_1 = A_0x_1 -A_1x_0 = (A_0-A_1)x_0
+0 = A_0x_0 + A_1x_1 = A_0x_0 -A_1x_0 = (A_0-A_1)x_0
\quad\Rightarrow\quad
A_0=A_1.
\]
diff --git a/buch/chapters/070-orthogonalitaet/jacobi.tex b/buch/chapters/070-orthogonalitaet/jacobi.tex
index 042d466..f776c03 100644
--- a/buch/chapters/070-orthogonalitaet/jacobi.tex
+++ b/buch/chapters/070-orthogonalitaet/jacobi.tex
@@ -189,6 +189,28 @@ rechten Rand haben.
\label{buch:orthogonal:fig:jacobi-parameter}}
\end{figure}
+\subsection{Jacobi-Gewichtsfunktion und Beta-Verteilung
+\label{buch:orthogonal:subsection:beta-verteilung}}
+Die Jacobi-Gewichtsfunktion entsteht aus der Wahrscheinlichkeitsdichte
+der Beta-Verteilung, die in
+Abschnitt~\ref{buch:rekursion:subsection:beta-verteilung}
+eingeführt wurde mit Hilfe der Variablen-Transformation $x = 2t-1$
+oder $t=(x+1)/2$.
+Das Integral mit der Jacobi-Gewichtsfunktion $w^{(\alpha,\beta)}(x)$
+kann damit umgeformt werden in
+\[
+\int_{-1}^1
+f(x)\,w^{(\alpha,\beta)}(x)\,dx
+=
+\int_0^1
+f(2t-1) w^{(\alpha,\beta)}(2t-1)\,2\,dt
+=
+\int_0^1
+f(2t-1)
+(1-(2t-1))^\alpha (1+(2t-1))^\beta
+\,2\,dt
+\]
+
%
%
%
diff --git a/buch/chapters/070-orthogonalitaet/orthogonal.tex b/buch/chapters/070-orthogonalitaet/orthogonal.tex
index d06f46e..a84248a 100644
--- a/buch/chapters/070-orthogonalitaet/orthogonal.tex
+++ b/buch/chapters/070-orthogonalitaet/orthogonal.tex
@@ -737,6 +737,57 @@ rechten Rand haben.
\label{buch:orthogonal:fig:jacobi-parameter}}
\end{figure}
+\subsubsection{Jacobi-Gewichtsfunktion und Beta-Verteilung
+\label{buch:orthogonal:subsection:beta-verteilung}}
+Die Jacobi-Gewichtsfunktion entsteht aus der Wahrscheinlichkeitsdichte
+der Beta-Verteilung, die in
+Abschnitt~\ref{buch:rekursion:subsection:beta-verteilung}
+eingeführt wurde mit Hilfe der Variablen-Transformation $x = 2t-1$
+oder $t=(x+1)/2$.
+Das Integral mit der Jacobi-Gewichtsfunktion $w^{(\alpha,\beta)}(x)$
+kann damit umgeformt werden in
+\begin{align*}
+\int_{-1}^1
+f(x)\,w^{(\alpha,\beta)}(x)\,dx
+&=
+\int_0^1
+f(2t-1) w^{(\alpha,\beta)}(2t-1)\,2\,dt
+\\
+&=
+\int_0^1
+f(2t-1)
+(1-(2t-1))^\alpha (1+(2t-1))^\beta
+\,2\,dt
+\\
+&=
+2^{\alpha+\beta+1}
+\int_0^1
+f(2t-1)
+\,
+t^\beta
+(1-t)^\alpha
+\,dt
+\\
+&=
+2^{\alpha+\beta+1}
+B(\alpha+1,\beta+1)
+\int_0^1
+f(2t-1)
+\,
+\frac{
+t^\beta
+(1-t)^\alpha
+}{B(\alpha+1,\beta+1)}
+\,dt.
+\end{align*}
+Auf der letzten Zeile steht ein Integral mit der Wahrscheinlichkeitsdichte
+der Beta-Verteilung.
+Orthogonale Funktionen bezüglich der Jacobischen Gewichtsfunktion
+$w^{(\alpha,\beta)}$ werden mit der genannten Substitution also
+zu orthogonalen Funktionen bezüglich der Beta-Verteilung mit
+Parametern $\beta+1$ und $\alpha+1$.
+
+
%
% Tschebyscheff-Gewichtsfunktion
%
diff --git a/buch/chapters/070-orthogonalitaet/uebungsaufgaben/701.tex b/buch/chapters/070-orthogonalitaet/uebungsaufgaben/701.tex
new file mode 100644
index 0000000..dad489f
--- /dev/null
+++ b/buch/chapters/070-orthogonalitaet/uebungsaufgaben/701.tex
@@ -0,0 +1,137 @@
+Für Funktionen auf dem Interval $(-\frac{\pi}2,\frac{\pi}2)$ ist
+\[
+\langle f,g\rangle
+=
+\frac12\int_{-\frac{\pi}2}^{\frac{\pi}2} f(x)g(x)\cos x\,dx
+\]
+ein Skalarprodukt.
+Bestimmen Sie bezüglich dieses Skalarproduktes orthogonale Polynome
+bis zum Grad $2$.
+
+\begin{hinweis}
+Verwenden Sie
+\begin{align*}
+\int_{-\frac{\pi}2}^{\frac{\pi}2} 1\cos x\,dx
+&=
+1,
+&
+\int_{-\frac{\pi}2}^{\frac{\pi}2} x^2\cos x\,dx
+&=
+\frac{\pi^2-8}{2},
+&
+\int_{-\frac{\pi}2}^{\frac{\pi}2} x^4\cos x\,dx
+&=
+\frac{\pi^4-48\pi^2+384}{8}.
+\end{align*}
+\end{hinweis}
+
+\begin{loesung}
+Wir müssen den Gram-Schmidt-Orthogonalisierungsprozess für die
+Polynome $f_0(x)=1$, $f_1(x)=x$ und $f_2(x)=x^2$ durchführen.
+Zunächst halten wir fest, dass
+\[
+\langle f_0,f_0\rangle
+=
+\frac12
+\int_{-\frac{\pi}2}^{\frac{\pi}2} \cos x\,dx
+=
+1,
+\]
+das Polynom $g_0(x)=f_0(x)$ ist hat also Norm $1$.
+
+Ein dazu orthogonales Polynom ist
+\(
+f_1(x) - \langle g_0,f_1\rangle g_0(x),
+\)
+wir müssen also das Skalarprodukt
+\[
+\langle g_0,f_1\rangle
+=
+\frac{1}{2}
+\int_{-\frac{\pi}2}^{\frac{\pi}2}
+x\cos x\,dx
+\]
+bestimmen.
+Es verschwindet, weil die Funktion $x\cos x$ ungerade ist.
+Somit ist die Funktion $f_1(x)=x$ orthogonal zu $f_0(x)=1$, um sie auch zu
+normieren berechnen wir das Integral
+\[
+\| f_1\|^2
+=
+\frac12\int_{-\frac{\pi}2}^{\frac{\pi}2} x^2\cos x\,dx
+=
+\frac{\pi^2-8}{4},
+\]
+und
+\[
+g_1(x)
+=
+\frac{2}{\sqrt{\pi^2-8}} x.
+\]
+
+Zur Berechnung von $g_2$ müssen wir die Skalarprodukte
+\begin{align*}
+\langle g_0,f_2\rangle
+&=
+\frac{1}{2}
+\int_{-\frac{\pi}2}^{\frac{\pi}2}
+x^2
+\cos x
+\,dx
+=
+\frac{\pi^2-8}{4}
+\\
+\langle g_1,f_2\rangle
+&=
+\frac{1}{2}
+\int_{-\frac{\pi}2}^{\frac{\pi}2}
+\frac{2}{\sqrt{\pi^2-8}}
+x
+\cdot x^2
+\cos x
+\,dx
+=
+0
+\end{align*}
+bestimmen.
+Damit wird das dritte Polynom
+\[
+f_2(x)
+- g_0(x)\langle g_0,f_2\rangle
+- g_1(x)\langle g_1,f_2\rangle
+=
+x^2 - \frac{\pi^2-8}{4},
+\]
+welches bereits orthogonal ist zu $g_0$ und $g_1$.
+Wir können auch noch erreichen, obwohl das nicht verlangt war,
+dass es normiert ist, indem wir die Norm berechnen:
+\[
+\left\| x^2-\frac{\pi^2-8}{4} \right\|^2
+=
+\frac12
+\int_{-\frac{\pi}2}^{\frac{\pi}2}
+\biggl(x^2-\frac{\pi^2-8}{4}\biggr)^2
+\cos x\,dx
+=
+20-2\pi^2
+\]
+woraus sich
+\[
+g_2(x)
+=
+\frac{1}{\sqrt{20-2\pi^2}}
+\biggl(
+x^2 - \frac{\pi^2-8}{4}
+\biggr).
+\]
+Damit haben wir die ersten drei bezüglich des obigen Skalarproduktes
+orthogonalen Polynome
+\begin{align*}
+g_0(x)&=1,
+&
+g_1(x)&=\frac{2x}{\sqrt{\pi^2-8}},
+&
+g_2(x)&=\frac{1}{\sqrt{20-2\pi^2}}\biggl(x^2-\frac{\pi^2-8}{4}\biggr)
+\end{align*}
+gefunden.
+\end{loesung}
diff --git a/buch/chapters/075-fourier/2d.tex b/buch/chapters/075-fourier/2d.tex
new file mode 100644
index 0000000..cc019c7
--- /dev/null
+++ b/buch/chapters/075-fourier/2d.tex
@@ -0,0 +1,19 @@
+%
+% 2d.tex
+%
+% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\section{Zweidimensionale Fourier-Transformation
+\label{buch:fourier:section:2d}}
+\rhead{Zweidimensionale Fourier-Transformation}
+
+\subsection{Fourier-Transformation und partielle Differentialgleichungen}
+
+\subsection{Fourier-Transformation in kartesischen Koordinaten}
+
+\subsection{Basisfunktionen in Polarkoordinaten}
+
+
+
+
+
diff --git a/buch/chapters/075-fourier/Makefile.inc b/buch/chapters/075-fourier/Makefile.inc
index ee9641c..c153dc4 100644
--- a/buch/chapters/075-fourier/Makefile.inc
+++ b/buch/chapters/075-fourier/Makefile.inc
@@ -5,4 +5,6 @@
#
CHAPTERFILES = $(CHAPTERFILES) \
+ chapters/075-fourier/bessel.tex \
+ chapters/075-fourier/2d.tex \
chapters/075-fourier/chapter.tex
diff --git a/buch/chapters/075-fourier/bessel.tex b/buch/chapters/075-fourier/bessel.tex
new file mode 100644
index 0000000..7e978f7
--- /dev/null
+++ b/buch/chapters/075-fourier/bessel.tex
@@ -0,0 +1,620 @@
+%
+% bessel.tex
+%
+% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\section{Fourier-Transformation und Bessel-Funktionen
+\label{buch:fourier:section:fourier-und-bessel}}
+\rhead{Fourier-Transformation und Bessel-Funktionen}
+
+Sei $f\colon \mathbb{R}^2\to\mathbb{C}$ eine auf $\mathbb{R}$ definierte
+Funktion.
+Die Fourier-Transformation von $f$ ist das Integral
+\begin{equation}
+(\mathscr{F}f)(u,v)
+=
+F(u,v)
+=
+\frac{1}{2\pi}
+\int_{-\infty}^\infty
+\int_{-\infty}^\infty
+f(x,y) e^{i(xu+yv)}
+\,dx\,dy.
+\label{buch:fourier:eqn:2dfourier}
+\end{equation}
+Die Funktionen $e_{u,v}\colon (x,y)\mapsto e^{i(xu+yv)}$
+sind die Eigenfunktionen des Laplace-Operators in kartesischen Koordinaten,
+sie erfüllen
+\[
+\Delta e_{u,v} = (u^2+v^2) \Delta e_{u,v}.
+\]
+Die Fourier-Integrale sind die Skalarprodukte
+\[
+(\mathscr{F}f)(u,v)
+=
+\langle
+e_{u,v},
+f
+\rangle,
+\]
+wobei das Skalarprodukt durch
+\[
+\langle f,g\rangle
+=
+\int_{-\infty}^\infty
+\int_{-\infty}^\infty
+\overline{f(x)} g(x)
+\,dx\,dy
+\]
+definiert ist.
+
+Jede Funktion in der Ebene kann auch in Polarkoordinaten ausgedrückt werden.
+Die kartesischen Koordinaten können mittels
+\begin{align*}
+x&=r\cos\varphi
+y&=r\sin\varphi
+\end{align*}
+durch die Polarkoordinaten $(r,\varphi)$ ausgedrückt werden.
+Wir schreiben
+\[
+\tilde{f}(r,\varphi)
+=
+f(r\cos\varphi,r\sin\varphi)
+\]
+für die Funktion $f$ ausgedrückt in Polarkoordinaten.
+
+In Polarkoordinaten wird das Skalarprodukt
+\[
+\langle f,g\rangle
+=
+\int_0^\infty \int_{0}^{2\pi} e^{in\varphi}
+\overline{
+\tilde{f}(r,\varphi)
+}
+\tilde{g}(r,\varphi)
+r\,dr\,d\varphi.
+\]
+Auch die Fouriertransformation kann jetzt durch Berechnung eines
+doppelten Integrals in Polarkoordinaten ermittelt werden.
+Ziel dieses Abschnitts ist zu zeigen, dass auch diese Berechnung auf
+Bessel-Funktionen führt.
+Im Gegenzug werden sich neue Eigenschaften und Darstellungen derselben
+ergeben.
+
+
+\subsection{Berechnung der Fourier-Transformation in Polarkoordinaten}
+Die Fourier-Transformation $(\mathscr{F}f)(u,v)$ ist eine Funktion
+$\mathbb{R}^2\to\mathbb{C}$, die vom Wellenvektor $(u,v)$ abhängt.
+Auch dieser Vektor kann in Polarkoordinaten ausgedrückt werden.
+Für die Polarkoordinaten in der Wellenvektor-Ebene soll die Bezeichnung
+$(R,\vartheta)$ verwendet werden, was auf die Transformationsgleichungen
+\begin{align*}
+u&=R\cos\vartheta\\
+v&=R\sin\vartheta
+\end{align*}
+führt.
+Im Exponenten der Exponentialfunktion
+des Fourier-Integrals~\eqref{buch:fourier:eqn:2dfourier}
+steht der Ausdruck
+\[
+xu+yv
+=
+r\cos\varphi\cdot R\cos\vartheta
++
+r\sin\varphi\cdot R\sin\vartheta
+=
+rR\cos(\varphi-\vartheta).
+\]
+Mit diesen Bezeichnungen wird das
+Fourier-Integral~\eqref{buch:fourier:eqn:2dfourier}
+zu
+\begin{align}
+\tilde{F}(R,\vartheta)
+&=
+\frac{1}{2\pi}
+\int_{0}^{\infty}
+\int_{0}^{2\pi}
+f(r\cos\varphi,r\sin\varphi)
+e^{irR\cos(\varphi-\vartheta)}
+\,d\varphi\,r\, dr
+\notag
+\\
+&=
+\frac{1}{2\pi}
+\int_{0}^{\infty}
+\int_{0}^{2\pi}
+\tilde{f}(r,\varphi)
+e^{irR\cos(\varphi-\vartheta)}
+\,d\varphi\,r\, dr.
+\label{buch:fourier:eqn:fouriertrafopolar}
+\end{align}
+Die partielle Funktion $\varphi\mapsto \tilde{f}(r,\varphi)$
+ist eine $2\pi$-periodische Funktion, sie lässt sich also als
+komplexe Fourier-Reihe
+\begin{equation}
+\tilde{f}(r,\varphi)
+=
+\sum_{n\in\mathbb{Z}} \hat{f}_n(r) e^{in\varphi}
+\label{buch:fourier:eqn:fourierkoef}
+\end{equation}
+schreiben, die Funktionen $\hat{f}_n(r)$ sind die komplexen
+Fourier-Koeffizienten.
+Setzt man \eqref{buch:fourier:eqn:fourierkoef} in die Fourier-Transformation
+\eqref{buch:fourier:eqn:fouriertrafopolar} ein, erhält man
+\begin{align*}
+\tilde{F}(R,\vartheta)
+&=
+\sum_{n\in\mathbb{Z}}
+\int_0^\infty
+\hat{f}_n(r)
+\frac{1}{2\pi}
+\int_0^{2\pi}
+e^{in\varphi+irR\cos(\varphi-\vartheta)}
+\,d\varphi
+\,
+r\,dr.
+\end{align*}
+Der Exponent im inneren Integral kann als
+\[
+in\varphi+irR\cos(\varphi-\vartheta)
+=
+i(n(\varphi-\vartheta)+rR\cos(\varphi-\vartheta))
++
+in\vartheta,
+\]
+oder im Integral als
+\[
+\tilde{F}(R,\vartheta)
+=
+\sum_{n\in\mathbb{Z}}
+\int_0^\infty
+\hat{f}_n(r)
+\frac{1}{2\pi}
+\int_0^{2\pi}
+e^{in(\varphi-\vartheta)+irR\cos(\varphi-\vartheta)}
+e^{in\vartheta}
+\,d\varphi
+\,
+r\,dr
+\]
+geschrieben werden.
+Der zweite Exonentialfaktor hängt nicht von $\varphi$ ab und kann daher
+aus dem Integral herausgezogen werden.
+Der erste Exponentialfaktor hängt nur von $\varphi-\vartheta$ ab.
+Da die Exponentialfunktion $2\pi$-periodisch ist, hat die Verschiebung
+um $\vartheta$ keinen Einfluss auf den Wert des Integrals.
+Die Fourier-Transformation ist daher auch
+\[
+\tilde{F}(R,\vartheta)
+=
+\sum_{n\in\mathbb{Z}}
+\int_0^\infty
+\hat{f}_n(r)
+e^{in\vartheta}
+\underbrace{
+\frac{1}{2\pi}
+\int_0^{2\pi}
+e^{in\varphi+irR\cos\varphi}
+\,d\varphi
+}_{\displaystyle =:F_n(rR)}
+\,
+r\,dr.
+\]
+Die Beziehung zu den Besselfunktionen können wir daraus herstellen,
+indem wir zunächst $\xi = rR$ abkürzen und dann das innere Integral
+\begin{equation}
+F_n(\xi)
+=
+\frac{1}{2\pi}
+\int_{0}^{2\pi}
+e^{in\varphi+i\xi\cos\varphi}
+\,d\varphi
+=
+\frac{1}{2\pi}
+\int_{0}^{2\pi}
+e^{in\varphi}e^{i\xi\cos\varphi}
+\,d\varphi
+\label{buch:fourier:eqn:Fncosphi}
+\end{equation}
+auswerten.
+Exponentialfunktion als Potenzreihe entwickeln:
+\[
+F_n(\xi)
+=
+\frac{1}{2\pi}
+\int_0^{2\pi}
+e^{in\varphi}
+\sum_{k=0}^\infty
+\frac{
+i^k\xi^k \cos^k\varphi
+}{k!}
+\,d\varphi
+=
+\sum_{k=0}^\infty
+\frac{i^k\xi^k}{k!}
+\underbrace{
+\frac{1}{2\pi}
+\int_0^{2\pi}
+e^{in\varphi}
+\cos^k\varphi
+\,d\varphi}_{\displaystyle =c_{n,k}}.
+\]
+Das Integral auf der rechten Seite ist im Wesentlichen ein
+Fourier-Koeffizient der Funktion $\varphi\mapsto \cos^k\varphi$.
+
+\subsubsection{Berechnung der Fourier-Koeffizienten von $\cos^k\varphi$}
+Indem man die Kosinus-Funktion als die Linearkombination
+\[
+\cos\varphi
+=
+\frac{e^{i\varphi}+e^{-i\varphi}}2
+\]
+von Exponentialfunktionen ausdrückt, kann man auch die $k$-te Potenz
+mit Hilfe des binomischen Satzes als
+\[
+\cos^k\varphi
+=
+\sum_{m=0}^k
+\frac{1}{2^k}
+\binom{k}{m}
+e^{im\varphi}e^{i(m-k)\varphi}
+=
+\sum_{m=0}^k
+\frac{1}{2^k}
+\binom{k}{m}
+e^{i(2m-k)\varphi}
+\]
+ausdrücken.
+Der Fourier-Koeffizient von $\cos^k\varphi$ ist daher das Integral
+\begin{align*}
+c_{n,k}
+&=
+\frac{1}{2\pi}
+\int_0^{2\pi}
+e^{in\varphi}\cos^k\varphi\,d\varphi
+\\
+&=
+\frac{1}{2^k}
+\sum_{m=0}^k
+\binom{k}{m}
+\frac{1}{2\pi}
+\int_0^{2\pi}
+e^{in\varphi}e^{i(2m-k)\varphi}
+\,d\varphi
+\\
+&=
+\frac{1}{2^k}
+\sum_{m=0}^k
+\binom{k}{m}
+\frac{1}{2\pi}
+\int_0^{2\pi}
+e^{i(2m-k+n)\varphi}
+\,d\varphi.
+\end{align*}
+Für $2m-k+n=0$ ist das Integral ein Integral der Funktion $1$ über
+ein Intervall der Länge $2\pi$, zusammen mit dem Faktor $1/2\pi$ hat
+es daher den Wert $1$.
+Für $2m-k+n\ne 0$ ist das Integral
+\[
+\frac{1}{2\pi}
+\int_0^{2\pi}
+e^{i(2m-k+n)\varphi}
+\,d\varphi
+=
+\frac{1}{i}
+\biggl[
+\frac{e^{i(2m-k+n)\varphi}}{2m-k+n}
+\biggr]_0^{2\pi}
+=
+0
+\]
+weil die Exponentialfunktion $2\pi$-periodisch ist.
+Nur für $k=2m+n$ ergibt sich ein nicht verschwindender
+Fourier-Koeffizient.
+Eine Summe über $k\in\mathbb{N}$ kann daher auch als Summe über
+$m\in\mathbb{N}$ interpretiert werden, in der $k$ durch die Formel
+$k=2m+n$ gegeben wird.
+Mit dieser Konvention wird
+\[
+c_{n,k}
+=
+c_{n,2m+n}
+%=
+%\frac{1}{2\pi}
+%\int_0^{2\pi}
+%e^{-i(2m+n)\varphi}
+%\cos^{2m+n}\varphi
+%\,d\varphi
+=
+\frac{1}{2^{2m+n}}
+\binom{2m+n}{m}
+\]
+schreiben lässt.
+
+\subsubsection{Berechnung von $F_n(\xi)$}
+Die Reihe für $F_n(\xi)$ lässt sich weiter vereinfachen.
+Wir verwenden wieder die Tatsache, dass sich nur für $n=-2m-k$
+ein Beitrag ergibt.
+Dies bedeutet, dass $k=2m+n$ sein muss, die Summe kann damit als
+Summe über $m$ statt über $k$ geschrieben werden.
+Somit ist
+\begin{align*}
+F_n(\xi)
+&=
+\sum_{k=0}^\infty
+\frac{i^k\xi^k}{k!}
+c_{n,k}
+=
+\sum_{m=0}^\infty
+\frac{i^{2m+n}\xi^{2m+n}}{(2m+n)!}
+c_{n,2m+n}
+\\
+&=
+\sum_{m=0}^\infty
+\frac{1}{2^{2m+n}}
+\binom{2m+n}{m}
+\frac{i^{2m+n}\xi^{2m+n}}{(2m+n)!}
+\\
+&=
+i^n
+\sum_{m=0}^\infty
+\frac{(-1)^m}{(2m+n)!}
+\frac{(2m+n)!}{m!\,(2m+n-m)!}
+\biggl(\frac{\xi}{2}\biggr)^{2m+n}
+\\
+&=
+i^n
+\sum_{m=0}^\infty
+\frac{(-1)^m}
+{m!\,\Gamma(m+n+1)}
+\biggl(\frac{\xi}{2}\biggr)^{2m+n}
+=
+i^n J_n(\xi).
+\end{align*}
+Die Funktionen $F_n(\xi)$ sind daher bis auf einen Phasenfaktor der
+Wert $J_n(\xi)$ einer Bessel-Funktion.
+
+\subsubsection{Berechnung der Fourier-Transformation mit Bessel-Funktionen}
+Mit allen oben zusammengestellten Notationen kann die Fourier-Transformation
+jetzt in Polarkoordinaten als
+\[
+\tilde{F}(R,\vartheta)
+=
+\sum_{n\in\mathbb{Z}}
+e^{in\vartheta}
+\int_0^\infty
+\hat{f}_n(r)
+i^n
+J_n(rR)
+r\,dr
+\]
+geschrieben werden.
+Dies hat tatsächlich die Form eines Skalarproduktes der Funktion
+$\tilde{f}(r,\varphi)$ mit einer Funktion der Form
+\[
+\tilde{e}_{n,R}(r,\varphi)
+=
+e^{in\varphi}
+J_n(rR).
+\]
+Letzeres sind die in Abschnitt~\ref{buch:fourier:section:2d}
+versprochenen Basisfunktionen.
+
+\subsubsection{Fourier-Reihe von $e^{i\xi\cos\varphi}$}
+Die Funktionen $F_n(\xi)$ sind wegen
+\[
+F_n(\xi)
+=
+\frac{1}{2\pi}
+\int_0^{2\pi}
+e^{in\varphi}
+e^{i\xi\cos\varphi}
+\,d\varphi,
+\]
+daraus kann man die Fourier-Reihe von $e^{i\xi\cos\varphi}$
+berechnen, dies wird im folgenden Satz durchgeführt.
+
+
+\begin{satz}
+\label{buch:fourier:satz:expinphi}
+Die komplexe Fourier-Reihe der Funktion
+$\varphi\mapsto \exp(i\xi\cos\varphi)$
+ist
+\begin{align}
+e^{i\xi\cos\varphi}
+&=
+J_0(\xi)
++
+2\sum_{n=1}^\infty i^n J_n(\xi) \cos n\varphi.
+\label{buch:fourier:eqn:expinphicomplex}.
+\intertext{Real- und Imaginärteil davon sind die Fourier-Reihen}
+\cos(\xi\cos\varphi)
+&=
+J_0(\xi) + 2\sum_{m=1}^\infty (-1)^m J_{2m}(\xi) \cos2m\varphi
+\label{buch:fourier:eqn:expinphireal}
+\\
+\sin(\xi\cos\varphi)
+&=
+2\sum_{m=0}^\infty (-1)^m J_{2m+1}(\xi) \cos(2m+1)\varphi.
+\label{buch:fourier:eqn:expinphiimaginary}
+\end{align}
+\end{satz}
+
+\begin{proof}[Beweis]
+Die Fourier-Koeffizienten $F_n(\xi)$ der Funktion $e^{i\xi\cos\varphi}$
+führen auf die Fourier-Reihe
+\begin{align*}
+e^{i\xi\cos\varphi}
+&=
+\sum_{n\in\mathbb{Z}} F_n(\xi) e^{in\varphi}
+=
+\sum_{n\in\mathbb{Z}} i^n J_n(\xi) e^{in\varphi}.
+\end{align*}
+Terme mit $\pm n$ können wegen
+\[
+\left.
+\begin{aligned}
+J_{-n}(\xi) &= (-1)^n J_n(\xi)
+\\
+i^{-n}&=(-1)^n i^n
+\end{aligned}
+\quad
+\right\}
+\qquad\Rightarrow\qquad
+i^{-n}J_{-n}(\xi) = i^n J_n(\xi)
+\]
+zusammengefasst werden, auf diese Weise erhält man
+\begin{align*}
+e^{i\xi\cos\varphi}
+&=
+J_0(\xi)
++
+\sum_{n=1}^\infty i^n J_n(\xi) (e^{in\varphi}+e^{-in\varphi})
+=
+2\sum_{n=1}^\infty i^n J_n(\xi) \cos n\varphi.
+\end{align*}
+Dies beweist
+\eqref{buch:fourier:eqn:expinphicomplex}.
+
+Indem man Real- und Imaginärteil trennt, kann man daraus auch
+die Fourier-Reihen von $\cos(\xi\cos\varphi)$ und
+$\sin(\xi\cos\varphi)$ gewinnen, sie sind
+\begin{align*}
+\exp(\xi\cos\varphi)
+&=
+J_0(\xi) + 2\sum_{n=1}^\infty i^{n} J_{n}(\xi) \cos n\varphi
+\\
+&=
+J_0(\xi)
++
+2\sum_{m=1}^\infty i^{2m}J_{2m}(\xi)\cos 2m\varphi
++
+2\sum_{m=0}^\infty i^{2m+1}J_{2m+1}(\xi)\cos(2m+1)\varphi
+\\
+&=
+J_0(\xi)
++
+2\sum_{m=1}^\infty (-1)^{m}J_{2m}(\xi)\cos 2m\varphi
++
+2i\sum_{m=0}^\infty (-1)^{m}J_{2m+1}(\xi)\cos(2m+1)\varphi
+\\
+\cos(\xi\cos\varphi)
+&=
+J_0(\xi)
++
+2\sum_{m=1}^\infty (-1)^{m}J_{2m}(\xi)\cos 2m\varphi
+\\
+\sin(\xi\cos\varphi)
+&=
+2\sum_{m=0}^\infty (-1)^m J_{2m+1}(\xi) \cos(2m+1)\varphi.
+\end{align*}
+Damit sind auch die Formeln
+\eqref{buch:fourier:eqn:expinphireal}
+und
+\eqref{buch:fourier:eqn:expinphiimaginary}
+für die reellen Fourier-Reihen bewiesen.
+\end{proof}
+
+%
+% Integraldarstellung der Bessel-Funktion
+%
+\subsection{Integraldarstellung der Bessel-Funktion}
+Aus \eqref{buch:fourier:eqn:Fncosphi} kann jetzt die Integraldarstelltung
+der Bessel-Funktionen gewonnen werden.
+Dazu substituiert man $\varphi$ durch $\tau$ mit
+$\varphi = \frac{\pi}2-\tau$
+oder
+$\tau=\frac{\pi}2-\varphi$
+und $d\tau = -d\varphi$
+im Integral und berechnet
+\begin{align*}
+J_n(\xi)
+&=
+(-i)^n
+\frac{1}{2\pi}
+\int_0^{2\pi}
+e^{in\varphi+i\xi \cos\varphi}
+\,d\varphi
+\\
+&=
+-
+(-i)^n
+\frac{1}{2\pi}
+\int_{\frac{\pi}2}^{-\frac{3\pi}2}
+e^{in(\frac{\pi}2-\tau) + i\xi\cos(\frac{\pi}2-\tau)}
+\,d\tau
+\\
+&=
+(-i)^n
+\frac{1}{2\pi}
+\int^{\frac{\pi}2}_{-\frac{3\pi}2}
+i^n
+e^{-in\tau + i\xi\sin\tau)}
+\,d\tau.
+\intertext{Da der Integrand $2\pi$-periodisch ist, kann das
+Integrationsintervall auf $[-\pi,\pi]$ verschoben werden, was}
+&=
+\frac{1}{2\pi}
+\int_{-\pi}^{\pi}
+e^{-in\tau + i\xi\sin\tau)}
+\,d\tau.
+\intertext{ergibt.
+Das Integral kann in zwei Integrale}
+&=
+\frac{1}{2\pi}
+\int_0^\pi
+e^{-in\tau + i\xi\sin\tau}
+\,d\tau
++
+\frac{1}{2\pi}
+\int_0^\pi
+e^{in\tau - i\xi\sin\tau}
+\,d\tau
+\intertext{aufgeteilt werden,
+}
+&=
+\frac{1}{\pi}
+\int_0^\pi
+\frac{
+e^{-in\tau + i\xi\sin\tau}
++
+e^{in\tau - i\xi\sin\tau}
+}{2}
+\,d\tau
+\\
+&=
+\frac{1}{\pi}
+\int_0^\pi
+\frac{
+e^{i(-n\tau + \xi\sin\tau)}
++
+e^{-i(-n\tau + \xi\sin\tau)}
+}{2}
+\,d\tau
+\\
+&=
+\frac{1}{\pi}
+\int_0^\pi
+\cos(n\tau - \xi\sin\tau)
+\,d\tau.
+\end{align*}
+Damit haben wir den folgenden Satz bewiesen:
+
+\begin{satz}[Integraldarstelltung der Bessel-Funktionen]
+\label{buch:fourier:satz:bessel-integraldarstellung}
+Die Bessel-Funktionen $J_n$ mit ganzzahliger Ordnung $n$ haben
+die Integraldarstellung
+\begin{equation}
+J_n(\xi)
+=
+\frac{1}{\pi}
+\int_0^\pi
+\cos(n\tau - \xi\sin\tau)
+\,d\tau.
+\label{buch:fourier:eqn:bessel-integraldarstellung}
+\end{equation}
+\end{satz}
+
+
+
+
diff --git a/buch/chapters/075-fourier/chapter.tex b/buch/chapters/075-fourier/chapter.tex
index 341d8df..681a1c0 100644
--- a/buch/chapters/075-fourier/chapter.tex
+++ b/buch/chapters/075-fourier/chapter.tex
@@ -13,7 +13,8 @@ führen zu neuen speziellen Funktionen.
In diesem Kapitel soll als Beispiel die Fourier-Transformation
der Bessel-Funktionen untersucht werden.
-%\input{chapters/075-fourier/bessel.tex}
+\input{chapters/075-fourier/2d.tex}
+\input{chapters/075-fourier/bessel.tex}
%\section{TODO}
%\begin{itemize}
diff --git a/buch/chapters/090-pde/Makefile.inc b/buch/chapters/090-pde/Makefile.inc
index a9ef74a..c64af06 100644
--- a/buch/chapters/090-pde/Makefile.inc
+++ b/buch/chapters/090-pde/Makefile.inc
@@ -10,4 +10,5 @@ CHAPTERFILES = $(CHAPTERFILES) \
chapters/090-pde/rechteck.tex \
chapters/090-pde/kreis.tex \
chapters/090-pde/kugel.tex \
+ chapters/090-pde/uebungsaufgaben/901.tex \
chapters/090-pde/chapter.tex
diff --git a/buch/chapters/090-pde/chapter.tex b/buch/chapters/090-pde/chapter.tex
index db909ee..a393da5 100644
--- a/buch/chapters/090-pde/chapter.tex
+++ b/buch/chapters/090-pde/chapter.tex
@@ -21,11 +21,11 @@ deren Lösungen spezielle Funktionen sind.
\input{chapters/090-pde/kreis.tex}
\input{chapters/090-pde/kugel.tex}
-%\section*{Übungsaufgaben}
-%\rhead{Übungsaufgaben}
-%\aufgabetoplevel{chapters/020-exponential/uebungsaufgaben}
-%\begin{uebungsaufgaben}
-%\uebungsaufgabe{0}
+\section*{Übungsaufgaben}
+\rhead{Übungsaufgaben}
+\aufgabetoplevel{chapters/090-pde/uebungsaufgaben}
+\begin{uebungsaufgaben}
+\uebungsaufgabe{901}
%\uebungsaufgabe{1}
-%\end{uebungsaufgaben}
+\end{uebungsaufgaben}
diff --git a/buch/chapters/090-pde/gleichung.tex b/buch/chapters/090-pde/gleichung.tex
index 7f65f06..583895d 100644
--- a/buch/chapters/090-pde/gleichung.tex
+++ b/buch/chapters/090-pde/gleichung.tex
@@ -5,6 +5,7 @@
%
\section{Gleichungen und Randbedingungen
\label{buch:pde:section:gleichungen-und-randbedingungen}}
+\rhead{Gebiete, Gleichungen und Randbedingungen}
\subsection{Gebiete, Differentialoperatoren, Randbedingungen}
diff --git a/buch/chapters/090-pde/kreis.tex b/buch/chapters/090-pde/kreis.tex
index a24b6bb..a8cab3e 100644
--- a/buch/chapters/090-pde/kreis.tex
+++ b/buch/chapters/090-pde/kreis.tex
@@ -5,6 +5,7 @@
%
\section{Kreisförmige Membran
\label{buch:pde:section:kreis}}
+\rhead{Kreisförmige Membran}
In diesem Abschnitt soll die Differentialgleichung einer kreisförmigen
Membran mit Hilfe der Separationsmethode gelöst werden.
Dabei werden die Bessel-Funktionen als Lösungsfunktionen
@@ -32,7 +33,7 @@ Der Laplace-Operator hat in Polarkoordinaten die Form
\frac1r
\frac{\partial}{\partial r}
+
-\frac{1}{r 2}
+\frac{1}{r^2}
\frac{\partial^2}{\partial\varphi^2}.
\label{buch:pde:kreis:laplace}
\end{equation}
@@ -120,7 +121,7 @@ für $\Phi(\varphi)$.
Die Gleichung für $\Phi$ hat für $\mu\ne 0$ die Lösungen
\begin{align*}
\Phi(\varphi) &= \cos\mu\varphi
-\text{und}\qquad
+&&\text{und}&
\Phi(\varphi) &= \sin\mu\varphi.
\end{align*}
Die Lösung muss aber auch stetig sein, d.~h.~es muss $\Phi(0)=\Phi(2\pi)$
diff --git a/buch/chapters/090-pde/kugel.tex b/buch/chapters/090-pde/kugel.tex
index 0e3524f..ee56316 100644
--- a/buch/chapters/090-pde/kugel.tex
+++ b/buch/chapters/090-pde/kugel.tex
@@ -5,4 +5,386 @@
%
\section{Kugelfunktionen
\label{buch:pde:section:kugel}}
+\rhead{Kugelfunktionen}
+Kugelsymmetrische Probleme können oft vorteilhaft in Kugelkoordinaten
+beschrieben werden.
+Die Separationsmethode kann auf partielle Differentialgleichungen
+mit dem Laplace-Operator angewendet werden.
+Die daraus resultierenden gewöhnlichen Differentialgleichungen führen
+einerseits auf die Laguerre-Differentialgleichung für den radialen
+Anteil sowie auf Kugelfunktionen für die Koordinaten der
+geographischen Länge und Breite.
+
+\subsection{Kugelkoordinaten}
+Wir verwenden Kugelkoordinaten $(r,\vartheta,\varphi)$, wobei $r$
+der Radius ist, $\vartheta$ die geographische Breite gemessen vom
+Nordpol der Kugel und $\varphi$ die geographische Breite.
+Der Definitionsbereich für Kugelkoordinaten ist
+\[
+\Omega
+=
+\{(r,\vartheta,\varphi)
+\;|\;
+r\ge 0\wedge
+0\le \vartheta\le \pi\wedge
+0\le \varphi< 2\pi
+\}.
+\]
+Die Entfernung eines Punktes von der $z$-Achse ist $r\sin\vartheta$.
+Daraus lassen sich die karteischen Koordinaten eines Punktes mit Hilfe
+von
+\[
+\begin{pmatrix}x\\y\\z\end{pmatrix}
+=
+\begin{pmatrix}
+r\cos\vartheta\\
+r\sin\vartheta\cos\varphi\\
+r\sin\vartheta\sin\varphi
+\end{pmatrix}.
+\]
+Man beachte, dass die Punkte auf der $z$-Achse keine eindeutigen
+Kugelkoordinaten haben.
+Sie sind charakterisiert durch $r\sin\vartheta=0$, was $\cos\vartheta=\pm1$
+impliziert.
+Entsprechend führen alle Werte von $\varphi$ auf den gleichen Punkt
+$(0,0,\pm r)$.
+
+\subsection{Der Laplace-Operator in Kugelkoordinaten}
+Der Laplace-Operator in Kugelkoordinaten lautet
+\begin{align}
+\Delta
+&=
+\frac{1}{r^2} \frac{\partial}{\partial r}r^2\frac{\partial}{\partial r}
++
+\frac{1}{r^2\sin\vartheta}\frac{\partial}{\partial\vartheta}
+\sin\vartheta\frac{\partial}{\partial\vartheta}
++
+\frac{1}{r^2\sin^2\vartheta}\frac{\partial^2}{\partial\varphi^2}.
+\label{buch:pde:kugel:laplace1}
+\intertext{Dies kann auch geschrieben werden als}
+&=
+\frac{\partial^2}{\partial r^2}
++
+\frac{2}{r}\frac{\partial}{\partial r}
++
+\frac{1}{r^2\sin\vartheta}\frac{\partial}{\partial\vartheta}
+\sin\vartheta\frac{\partial}{\partial\vartheta}
++
+\frac{1}{r^2\sin^2\vartheta}\frac{\partial^2}{\partial\varphi^2}
+\label{buch:pde:kugel:laplace2}
+\intertext{oder}
+&=
+\frac{1}{r}
+\frac{\partial^2}{\partial r^2} r
++
+\frac{1}{r^2\sin\vartheta}\frac{\partial}{\partial\vartheta}
+\sin\vartheta\frac{\partial}{\partial\vartheta}
++
+\frac{1}{r^2\sin^2\vartheta}\frac{\partial^2}{\partial\varphi^2}.
+\label{buch:pde:kugel:laplace3}
+\end{align}
+Dabei ist zu berücksichtigen, dass mit der Notation gemeint ist,
+dass ein Ableitungsoperator auf alles wirkt, was rechts im gleichen
+Term steht.
+Der Operator
+\[
+\frac{1}{r}
+\frac{\partial^2}{\partial r^2}r
+\quad\text{wirkt daher als}\quad
+\frac{1}{r}
+\frac{\partial^2}{\partial r^2}rf
+=
+\frac{1}{r}
+\frac{\partial}{\partial r}\biggl(f + r\frac{\partial f}{\partial r}\biggr)
+=
+\frac{1}{r}
+\frac{\partial f}{\partial r}
++
+\frac{1}{r}
+\frac{\partial f}{\partial r}
++
+\frac{\partial^2f}{\partial r^2}.
+=
+\frac{2}{r}\frac{\partial f}{\partial r}
++
+\frac{\partial^2f}{\partial r^2},
+\]
+was die Äquivalenz der beiden Formen
+\eqref{buch:pde:kugel:laplace2}
+und
+\eqref{buch:pde:kugel:laplace3}
+rechtfertigt.
+Auch die Äquivalenz mit
+\eqref{buch:pde:kugel:laplace1}
+kann auf ähnliche Weise verstanden werden.
+
+Die Herleitung dieser Formel ist ziemlich aufwendig und soll hier
+nicht dargestellt werden.
+Es sei aber darauf hingewiesen, dass sich für $\vartheta=\frac{\pi}2$
+wegen $\sin\vartheta=\sin\frac{\pi}2=1$
+der eingeschränkte Operator
+\[
+\Delta
+=
+\frac{1}{r^2}\frac{\partial }{\partial r} r^2\frac{\partial}{\partial r}
++
+\frac{1}{r^2}\frac{\partial^2}{\partial\varphi^2}
+\]
+ergibt.
+Wendet man wie oben die Produktregel auf den ersten Term an, entsteht die
+Form
+\[
+\frac{\partial^2}{\partial r^2}
++
+\frac{2}{r}
+\frac{\partial}{\partial r}
++
+\frac{1}{r^2}\frac{\partial^2}{\partial\varphi^2}
+\]
+die {\em nicht} übereinstimmt mit dem Laplace-Operator in
+Polarkoordinaten~\eqref{buch:pde:kreis:laplace}.
+Der Unterschied rührt daher, dass der Laplace-Operator die Krümmung
+der Koordinatenlinien berücksichtigt, in diesem Fall der Meridiane.
+
+\subsection{Separation}
+In Abschnitt~\ref{buch:pde:subsection:eigenwertproblem}
+wurde bereits gzeigt, wie die Wellengleichung
+\[
+\frac{1}{c^2}
+\frac{\partial^2 U}{\partial t^2}
+-\Delta U
+=
+0
+\]
+durch Separation der Zeit auf ein Eigenwertproblem für eine
+Funktion $u$ reduziert werden kann, die nur von den Ortskoordinaten
+abhängt.
+Es geht also nur noch darum, dass Eigenwertproblem
+\[
+\Delta u = -\lambda^2 u
+\]
+mit geeigneten Randbedingungen zu lösen.
+Dazu gehören einerseits eventuelle Gebietsränder, die im Moment
+nicht interessieren.
+Andererseits muss sichergestellt sein, dass die Lösungsfunktionen
+stetig und differentierbar sind an den Orten, wo das Koordinatensystem
+singulär ist.
+So müssen $u(r,\vartheta,\varphi)$ $2\pi$-periodisch in $\varphi$ sein.
+% XXX Ableitungen
+
+\subsubsection{Separation des radialen Anteils}
+Für das Eigenwertproblem verwenden wir den Ansatz
+\[
+u(r,\vartheta,\varphi)
+=
+R(r) \Theta(\vartheta) \Phi(\varphi),
+\]
+den wir in die Differentialgleichung einsetzen.
+So erhalten wir
+\[
+\biggl(\frac{1}{r^2}R''(r)+\frac{2}{r}R'(r) \biggr)
+\Theta(\vartheta)\Phi(\varphi)
++
+R(r)
+\frac{1}{r^2\sin\vartheta}
+\frac{\partial}{\partial\vartheta}(\sin\vartheta \Theta'(\vartheta))
+\Phi(\varphi)
++
+R(r)\Theta(\vartheta)
+\frac{1}{r^2\sin\vartheta} \Phi''(\varphi)
+=
+-\lambda^2 R(r)\Theta(\vartheta)\Phi(\varphi).
+\]
+Die Gleichung lässt sich nach Multiplikation mit $r^2$ und
+Division durch $u$ separieren in
+\begin{equation}
+\frac{R''(r)+2rR'(r)+\lambda^2r^2}{R(r)}
++
+\frac{1}{\Theta(\vartheta) \sin\vartheta}
+\frac{\partial}{\partial\vartheta}\sin\vartheta\Theta'(\vartheta)
++
+\frac{1}{\sin^2\vartheta}\frac{\Phi''(\varphi)}{\Phi(\varphi)}
+=
+0
+\label{buch:pde:kugel:separiert2}
+\end{equation}
+Der erste Term hängt nur von $r$ ab, die anderen nur von $\vartheta$ und
+$\varphi$, daher muss der erste Term konstant sein.
+Damit ergbit sich für den Radialanteil die gewöhnliche Differentialgleichung
+\[
+R''(r) + 2rR'(r) +\lambda^2 r^2 = \mu^2 R(r),
+\]
+die zum Beispiel mit der Potenzreihenmethode gelöst werden kann.
+Sie kann aber durch eine geeignete Substition nochmals auf die
+Laguerre-Differentialgleichung reduziert werden, wie in
+Kapitel~\ref{chapter:laguerre} dargelegt wird.
+
+\subsubsection{Kugelflächenanteil}
+Für die Separation der verbleibenden winkelabhängigen Teile muss die
+Gleichung
+\[
+\frac{1}{\Theta(\vartheta) \sin\vartheta}
+\frac{\partial}{\partial\vartheta}\sin\vartheta\Theta'(\vartheta)
++
+\frac{1}{\sin^2\vartheta}\frac{\Phi''(\varphi)}{\Phi(\varphi)}
+=
+-\mu^2
+\]
+mit $\sin^2\vartheta$ multipliziert werden, was auf
+\[
+\frac{\sin\vartheta}{\Theta(\vartheta)}
+\frac{\partial}{\partial\vartheta}\sin\vartheta\Theta'(\vartheta)
++
+\frac{\Phi''(\varphi)}{\Phi(\varphi)}
+=
+-\mu^2\sin^2\vartheta
+\quad\Rightarrow\quad
+\frac{\sin\vartheta}{\Theta(\vartheta)}
+\frac{\partial}{\partial\vartheta}\sin\vartheta\Theta'(\vartheta)
++
+\mu^2\sin^2\vartheta
+=
+-
+\frac{\Phi''(\varphi)}{\Phi(\varphi)}
+\]
+führt.
+Die linke Seite der letzten Gleichung hängt nur von $\vartheta$
+ab, die rechte nur von $\varphi$, beide Seiten müssen daher
+konstant sein, wir bezeichnen diese Konstante mit $\alpha^2$.
+So ergibt sich die Differentialgleichung
+\[
+\alpha^2
+=
+-\frac{\Phi''(\varphi)}{\Phi(\varphi)}
+\]
+für die Abhängigkeit von $\varphi$, mit der allgemeinen Lösung
+\[
+\Phi(\varphi)
+=
+A\cos\alpha \varphi
++
+B\sin\alpha \varphi.
+\]
+Die Randbedingungen verlangen, dass $\Phi(\varphi)$ eine $2\pi$-periodische
+Funktion ist, was genau dann möglich ist, wenn $\alpha=m$ ganzzahlig ist.
+Damit ergibt sich für die $\vartheta$-Abhängigkeit die Differentialgleichung
+\begin{equation}
+\frac{\sin\vartheta}{\Theta(\vartheta)}
+\frac{\partial}{\partial\vartheta}\sin\vartheta\Theta'(\vartheta)
++
+\mu^2\sin^2\vartheta
+=
+m^2.
+\label{buch:pde:kugel:eqn:thetaanteil}
+\end{equation}
+
+\subsubsection{Abhängigkeit von $\vartheta$}
+Die Differentialgleichung~\eqref{buch:pde:kugel:eqn:thetaanteil}
+ist etwas unhandlich, daher verwenden wir die Substitution $z=\cos\vartheta$,
+um die trigonometrischen Funktionen los zu werden.
+Wegen
+\[
+\frac{dz}{d\vartheta} = -\sin\vartheta =-\sqrt{1-z^2}
+\]
+können die Ableitungen nach $\vartheta$ auch durch Ableitungen nach $z$
+ausgedrückt werden.
+Wir schreiben dazu $Z(z)=\Theta(\vartheta)$ und berechnen
+\[
+\Theta'(\vartheta)
+=
+\frac{d\Theta}{d\vartheta}
+=
+\frac{dZ}{dz}\frac{dz}{d\vartheta}
+=
+-
+\sqrt{1-z^2}
+Z'(z).
+\]
+Dies bedeutet auch, dass
+\[
+\sin\vartheta\frac{d}{d\vartheta}
+=
+-
+(1-z^2)\frac{d}{dz},
+\]
+damit lässt sich die Differentialgleichung für $\Theta(\vartheta)$ umschreiben
+in eine Differentialgleichung für $Z(z)$, nämlich
+\[
+(1-z^2)\frac{d}{dz}(1-z^2)\frac{d}{dz} Z(z)
++
+\mu^2
+(1-z^2)
+Z(z)
+=
+m^2
+Z(z).
+\]
+Indem man die Ableitung im ersten Term mit Hilfe der Produktregel
+ausführt, kann man die Gleichung
+\[
+(1-z^2)\biggl(
+-2zZ'(z) + (1-z^2)Z''(z)
+\biggr)
++
+\mu^2(1-z^2)Z(z)
+=
+-m^2 Z(z)
+\]
+bekommen.
+Division durch $1-z^2$ ergibt die
+{\em Legendre-Differentialgleichung}
+\begin{equation}
+(1-z^2)Z''(z)
+-2zZ'(z)
++
+\biggl(
+\mu^2 - \frac{m^2}{1-z^2}
+\biggr)
+Z(z)
+=
+0.
+\label{buch:pde:kugel:eqn:legendre-dgl}
+\end{equation}
+Eine Diskussion der Lösungen dieser Differentialgleichung erfolgt im
+Kapitel~\ref{chapter:kugel}.
+
+\subsection{Kugelfunktionen}
+Die Legendre-Differentialgleichung~\eqref{buch:pde:kugel:eqn:legendre-dgl}
+hat Lösungen für Werte von $\mu$ derart, dass $\mu^2=l(l+1)$ für natürliche
+Zahlen $l$.
+Die Lösungen sind sogar Polynome, die wir mit $P_l^{(m)}(z)$
+bezeichnen, dabei ist $m$ eine ganze Zahl mit $-l\le m\le l$.
+Die Funktionen $P_l^{(m)}(\cos\vartheta)e^{im\varphi}$
+sind daher alle Lösungen des von $\vartheta$ und $\varphi$
+abhängigen Teils der Lösungen des Eigenwertproblems.
+Mit einer geeigneten Normierung kann man zudem eine Familie von
+bezüglich des Skalarproduktes
+\[
+\langle f,g\rangle_{S^2}
+=
+\int_{-\pi}^{\pi}
+\int_{0}^{\pi}
+\overline{f(\vartheta,\varphi)}
+g(\vartheta,\varphi)
+\sin\vartheta
+\,d\vartheta
+\,d\varphi
+\]
+orthonormiete Funktionen auf der Kugeloberfläche erhalten, die
+man normalerweise als
+\[
+Y_{lm}(\vartheta,\varphi)
+=
+\frac{1}{\sqrt{2\pi}}
+\sqrt{
+\frac{2l+1}{2}\cdot
+\frac{(l-m)!}{(l+m)!}
+}
+P_{l}^{(m)}(\cos\vartheta)e^{im\varphi}
+\]
+bezeichnet.
+
+
+
+
diff --git a/buch/chapters/090-pde/rechteck.tex b/buch/chapters/090-pde/rechteck.tex
index 72e2806..b7dfe11 100644
--- a/buch/chapters/090-pde/rechteck.tex
+++ b/buch/chapters/090-pde/rechteck.tex
@@ -5,6 +5,7 @@
%
\section{Rechteckige Membran
\label{buch:pde:section:rechteck}}
+\rhead{Rechteckige Membran}
Als Beispiel für die Lösung des in
Abschnitt~\ref{buch:pde:subsection:eigenwertproblem}
aus der Wellengleichung abgeleiteten Eigenwertproblems
diff --git a/buch/chapters/090-pde/separation.tex b/buch/chapters/090-pde/separation.tex
index 6faceaa..e5e144a 100644
--- a/buch/chapters/090-pde/separation.tex
+++ b/buch/chapters/090-pde/separation.tex
@@ -5,6 +5,7 @@
%
\section{Separationsmethode
\label{buch:pde:section:separation}}
+\rhead{Separationsmethode}
Die Existenz der Lösung einer gewöhnlichen Differentialgleichung
ist unter einigermassen milden Bedingungen in der Nähe der
Anfangsbedingung garantiert.
diff --git a/buch/chapters/090-pde/uebungsaufgaben/901.tex b/buch/chapters/090-pde/uebungsaufgaben/901.tex
new file mode 100644
index 0000000..67fa8e5
--- /dev/null
+++ b/buch/chapters/090-pde/uebungsaufgaben/901.tex
@@ -0,0 +1,82 @@
+Die Differentialgleichung
+\begin{equation}
+\frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2}
+\qquad
+\text{im Gebiet}
+\qquad
+(t,x)\in \Omega=\mathbb{R}^+\times (0,l)
+\label{505:waermeleitungsgleichung}
+\end{equation}
+beschreibt die Änderung der Temperatur eines Stabes der Länge $l$.
+Die homogene Randbedingung
+\begin{equation}
+u(t,0)=
+u(t,l)=0
+\label{505:homogene-randbedingung}
+\end{equation}
+besagt, dass der Stab an seinen Enden auf Temperatur $0$ gehalten.
+Zur Lösung dieser Differentialgleichung muss auch die Temperatur
+zur Zeit $t=0$ in Form einer Randbedingung
+\[
+u(0,x) = T_0(x)
+\]
+gegeben sein.
+Führen Sie Separation für die
+Differentialgleichung~\eqref{505:waermeleitungsgleichung}
+durch und bestimmen Sie die zulässigen Werte der Separationskonstanten.
+
+\begin{loesung}
+Man verwendet den Ansatz $u(t,x)= T(t)\cdot X(x)$ und setzt diesen
+in die Differentialgleichung ein, die dadurch zu
+\[
+T'(t)X(x) = \kappa T(t) X''(x)
+\]
+wird.
+Division durch $T(t)X(x)$ wird dies zu
+\[
+\frac{T'(t)}{T(t)}
+=
+\kappa
+\frac{X''(x)}{X(x)}.
+\]
+Da die linke Seite nur von $t$ abhängt, die rechte aber nur von $x$, müssen
+beide Seiten konstant sein.
+Wir bezeichnen die Konstante mit $-\lambda^2$, so dass wir die beiden
+gewöhnlichen Differentialgleichungen
+\begin{align*}
+\frac{1}{\kappa}
+\frac{T'(t)}{T(t)}&=-\lambda^2
+&
+\frac{X''(x)}{X(x)}&=-\lambda^2
+\\
+T'(t)&=-\lambda^2\kappa T(t)
+&
+X''(x) &= -\lambda^2 X(x)
+\intertext{welche die Lösungen}
+T(t)&=Ce^{-\lambda^2\kappa t}
+&
+X(x)&= A\cos\lambda x + B\sin\lambda x
+\end{align*}
+haben.
+Die Lösung $X(x)$ muss aber auch die homogene Randbedingung
+\eqref{505:homogene-randbedingung} erfüllen.
+Setzt man $x=0$ und $x=l$ ein, folgt
+\begin{align*}
+0 = X(0)&=A\cos 0 + B\sin 0 = A
+&
+0 = X(l)&=B\sin \lambda l,
+\end{align*}
+woraus man schliessen kann, dass $\lambda l$ ein ganzzahliges
+Vielfaches von $\pi$ ist, wir schreiben $\lambda l = k\pi$ oder
+\[
+\lambda = \frac{k\pi}{l}.
+\]
+Damit sind die möglichen Werte $\lambda$ bestimmt und man kann jetzt
+auch die möglichen Lösungen aufschreiben, sie sind
+\[
+u(t,x)
+=
+\sum_{k=1}^\infty b_k e^{-k^2\pi^2\kappa t/l^2}\sin\frac{k\pi x}{l}.
+\qedhere
+\]
+\end{loesung}
diff --git a/buch/chapters/110-elliptisch/Makefile.inc b/buch/chapters/110-elliptisch/Makefile.inc
index 0ca1392..538db68 100644
--- a/buch/chapters/110-elliptisch/Makefile.inc
+++ b/buch/chapters/110-elliptisch/Makefile.inc
@@ -8,4 +8,5 @@ CHAPTERFILES = $(CHAPTERFILES) \
chapters/110-elliptisch/ellintegral.tex \
chapters/110-elliptisch/jacobi.tex \
chapters/110-elliptisch/lemniskate.tex \
+ chapters/110-elliptisch/uebungsaufgaben/001.tex \
chapters/110-geometrie/chapter.tex
diff --git a/buch/chapters/110-elliptisch/chapter.tex b/buch/chapters/110-elliptisch/chapter.tex
index a03ce24..e09fa53 100644
--- a/buch/chapters/110-elliptisch/chapter.tex
+++ b/buch/chapters/110-elliptisch/chapter.tex
@@ -20,11 +20,11 @@ aufgebaute Integrale in dieser Familie zu finden.
\input{chapters/110-elliptisch/jacobi.tex}
\input{chapters/110-elliptisch/lemniskate.tex}
-%\section*{Übungsaufgaben}
-%\rhead{Übungsaufgaben}
-%\aufgabetoplevel{chapters/020-exponential/uebungsaufgaben}
-%\begin{uebungsaufgaben}
+\section*{Übungsaufgaben}
+\rhead{Übungsaufgaben}
+\aufgabetoplevel{chapters/110-elliptisch/uebungsaufgaben}
+\begin{uebungsaufgaben}
%\uebungsaufgabe{0}
-%\uebungsaufgabe{1}
-%\end{uebungsaufgaben}
+\uebungsaufgabe{1}
+\end{uebungsaufgaben}
diff --git a/buch/chapters/110-elliptisch/images/jacobiplots.pdf b/buch/chapters/110-elliptisch/images/jacobiplots.pdf
index d11bde8..88cf119 100644
--- a/buch/chapters/110-elliptisch/images/jacobiplots.pdf
+++ b/buch/chapters/110-elliptisch/images/jacobiplots.pdf
Binary files differ
diff --git a/buch/chapters/110-elliptisch/images/jacobiplots.tex b/buch/chapters/110-elliptisch/images/jacobiplots.tex
index 4fc572e..fec04fc 100644
--- a/buch/chapters/110-elliptisch/images/jacobiplots.tex
+++ b/buch/chapters/110-elliptisch/images/jacobiplots.tex
@@ -31,7 +31,7 @@
\fill[color=gray!50] (-0.2,1.65) rectangle (7.0,2.3);
\draw[line width=0.5pt] (-0.2,-6) rectangle (7.0,2.3);
\begin{scope}[scale=0.5]
-\node at (6.5,{\dy+2}) {$m = #1$};
+\node at (6.5,{\dy+2}) {$k^2 = #1$};
\end{scope}
}
\def\jacobiplot#1#2#3#4{
diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex
new file mode 100644
index 0000000..8e4b39f
--- /dev/null
+++ b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex
@@ -0,0 +1,312 @@
+In einem anharmonische Oszillator oszilliert eine Masse $m$ unter dem
+Einfluss einer Kraft, die nach dem Gesetz
+\[
+F(x) = -\kappa x + \delta x^3
+\]
+von der Auslenkung aus der Ruhelage abhängt.
+Nehmen Sie im Folgenden an, dass $\delta >0$ ist,
+dass also die rücktreibende Kraft $F(x)$ kleiner ist als bei einem
+harmonischen Oszillator.
+Ziel der folgenden Teilaufgaben ist, die Lösung $x(t)$ schrittweise
+dadurch zu bestimmen, dass die Bewegungsgleichung in die Differentialgleichung
+der Jacobischen elliptischen Funktion $\operatorname{sn}(u,k)$ umgeformt
+wird.
+\begin{teilaufgaben}
+\item
+Berechnen Sie die Auslenkung $x_0$, bei der die rücktreibende Kraft
+verschwindet.
+Eine beschränkte Schwingung kann diese Amplitude nicht überschreiten.
+\item
+Berechnen Sie die potentielle Energie in Abhängigkeit von der
+Auslenkung.
+\item
+\label{buch:1101:basic-dgl}
+Formulieren Sie den Energieerhaltungssatz für die Gesamtenergie $E$
+dieses Oszillators.
+Leiten Sie daraus eine nichtlineare Differentialgleichung erster Ordnung
+for den anharmonischen Oszillator ab, die sie in der Form
+$\frac12m\dot{x}^2 = f(x)$ schreiben.
+\item
+Die Amplitude der Schwingung ist derjenige $x$-Wert, für den die
+Geschwindigkeit verschwindet.
+Leiten Sie die Amplitude aus der Differentialgleichung von
+\ref{buch:1101:basic-dgl} ab.
+Sie erhalten zwei Werte $x_{\pm}$, wobei der kleinere $x_-$
+die Amplitude einer beschränkten Schwingung beschreibt,
+während die $x_+$ die minimale Ausgangsamplitude einer gegen
+$\infty$ divergenten Lösung ist.
+\item
+Rechnen Sie nach, dass
+\[
+\frac{x_+^2+x_-^2}{2}
+=
+x_0^2
+\qquad\text{und}\qquad
+x_-^2x_+^2
+=
+\frac{4E}{\delta}.
+\]
+\item
+Faktorisieren Sie die Funktion $f(x)$ in der Differentialgleichung
+von Teilaufgabe c) mit Hilfe der in Teilaufgabe d) bestimmten
+Nullstellen $x_{\pm}^2$.
+\item
+Dividieren Sie die Differentialgleichung durch $x_-^2$, schreiben
+Sie $X=x/x_-$ und bringen Sie die Differentialgleichung in die
+Form
+\begin{equation}
+A \dot{X}^2
+=
+(1-X^2)
+(1-k^2X^2),
+\label{buch:1101:eqn:dgl3}
+\end{equation}
+wobei $k^2=x_-^2/x_+^2$ und $A$ geeignet gewählt werden müssen.
+\item
+\label{buch:1101:teilaufgabe:dgl3}
+Verwenden Sie $t(\tau) = \alpha\tau$
+und
+$Y(\tau)=X(t(\tau))$ um eine Differentialgleichung für die Funktion
+$Y(\tau)$ zu gewinnen, die die Form der Differentialgleichung
+von $\operatorname{sn}(u,k)$ hat, für die also $A=0$ in
+\eqref{buch:1101:eqn:dgl3} ist.
+\item
+Verwenden Sie die Lösung $\operatorname{sn}(u,k)$ der in
+\ref{buch:1101:teilaufgabe:dgl3} erhaltenen Differentialgleichung,
+um die Lösung $x(t)$ der ursprünglichen Gleichung aufzuschreiben.
+\end{teilaufgaben}
+
+\begin{loesung}
+\begin{figure}
+\centering
+\includegraphics{chapters/110-elliptisch/uebungsaufgaben/anharmonisch.pdf}
+\caption{Rechte Seite der Differentialgleichung
+\eqref{buch:1101:eqn:dglf}.
+Eine beschränkte Lösung bewegt sich im Bereich $x<x_-$
+während im Bereich $x>x_+$ die Kraft abstossend ist und zu einer
+divergenten Lösung führt.
+\label{buch:1101:fig:potential}
+}
+\end{figure}
+\begin{teilaufgaben}
+\item
+Wegen
+\[
+F(x)
+=
+-\kappa x\biggl(1-\frac{\delta}{\kappa}x^2\biggr)
+=
+-Ix
+\biggl(1-\sqrt{\frac{\delta}{\kappa}}x\biggr)
+\biggl(1+\sqrt{\frac{\delta}{\kappa}}x\biggr)
+\]
+folgt, dass die rücktreibende Kraft bei der Auslenkung $\pm x_0$ mit
+\[
+x_0^2
+=
+\frac{\kappa}{\delta}
+\qquad\text{oder}\qquad
+x_0 = \sqrt{\frac{\kappa}{\delta}}
+\]
+verschwindet.
+\item
+Die potentielle Energie ist die Arbeit, die gegen die rücktreibende Kraft
+geleistet wird, um die Auslenkung $x$ zu erreichen.
+Sie entsteht durch Integrieren der Kraft über
+das Auslenkungsinterval, also
+\[
+E_{\text{pot}}
+=
+-
+\int_0^x F(\xi) \,d\xi
+=
+\int_0^x \kappa\xi-\delta\xi^3\,d\xi
+=
+\biggl[
+\kappa\frac{\xi^2}{2}
+-
+\delta
+\frac{\xi^4}{4}
+\biggr]_0^x
+=
+\kappa\frac{x^2}{2}
+-
+\delta\frac{x^4}{4}.
+\]
+\item
+Die kinetische Energie ist gegeben durch
+\[
+E_{\text{kin}}
+=
+\frac12m\dot{x}^2.
+\]
+Die Gesamtenergie ist damit
+\[
+E
+=
+\frac12m\dot{x}^2
++
+\kappa
+\frac{x^2}{2}
+-
+\delta
+\frac{x^4}{4}.
+\]
+Die verlangte Umformung ergibt
+\begin{align}
+\frac12m\dot{x}^2
+&=
+E
+-
+\kappa\frac{x^2}{2}
++
+\delta\frac{x^4}{4}
+\label{buch:1101:eqn:dglf}
+\end{align}
+als Differentialgleichung für $x$.
+Die Ableitung $\dot{x}$ hat positives Vorzeichen wenn die Kraft
+abstossend ist und negatives Vorzeichen dort, wo die Kraft anziehend ist.
+%
+\item
+Die Amplitude der Schwingung ist derjenige $x$-Wert, für den
+die Geschwindigkeit verschwindet, also eine Lösung der Gleichung
+\[
+0
+=
+\frac{2E}{m} -\frac{\kappa}{m}x^2 + \frac{\delta}{2m}x^4.
+\]
+Der gemeinsame Nenner $m$ spielt offenbar keine Rolle.
+Die Gleichung hat die zwei Lösungen
+\[
+x_{\pm}^2
+=
+\frac{\kappa \pm \sqrt{\kappa^2-4E\delta}}{\delta}
+=
+\frac{\kappa}{\delta}
+\pm
+\sqrt{
+\biggl(\frac{\kappa}{\delta}\biggr)^2
+-
+\frac{4E}{\delta}
+}.
+\]
+Die Situation ist in Abbildung~\ref{buch:1101:fig:potential}
+Für $x>x_+$ ist die Kraft abstossend, die Lösung divergiert.
+Die Lösung mit dem negativen Zeichen $x_-$ bleibt dagegen beschränkt,
+dies ist die Lösung, die wir suchen.
+
+\item
+Die beiden Formeln ergeben sich aus den Regeln von Vieta für die
+Lösungen einer quadratischen Gleichungg der Form $x^4+px^2+q$.
+Die Nullstellen haben den Mittelwert $-p/2$ und das Produkt $q$.
+
+\item
+Die rechte Seite der Differentialgleichung lässt sich mit Hilfe
+der beiden Nullstellen $x_{\pm}^2$ faktorisieren und bekommt die Form
+\[
+\frac12m\dot{x}^2
+=
+\frac{\delta}{4}(x_+^2-x^2)(x_-^2-x^2).
+\]
+
+\item
+Indem die ganze Gleichung durch $x_-^2$ dividiert wird, entsteht
+\[
+\frac12m
+\biggl(\frac{\dot{x}}{x_-}\biggr)^2
+=
+\frac{\delta}{4}
+(x_+^2-x^2)
+\biggl(1-\frac{x^2}{x_-^2}\biggr).
+\]
+Schreiben wir $X=x/x_-$ wird daraus
+\[
+\frac1{2}m\dot{X}^2
+=
+\frac{\delta}{4}
+\biggl(x_+^2-x_-^2 X^2\biggr)
+(1-X^2).
+\]
+Durch Ausklammern von $x_+^2$ im ersten Faktor wir daraus
+\[
+\frac1{2}m\dot{X}^2
+=
+\frac{\delta}{4}
+x_+^2
+\biggl(1-\frac{x_-^2}{x_+^2} X^2\biggr)
+(1-X^2).
+\]
+Mit der Schreibweise $k^2 = x_-^2/x_+^2$ wird die Differentialgleichung
+zu
+\begin{equation}
+\frac{2m}{\delta x_+^2} \dot{X}^2
+=
+(1-X^2)(1-k^2X^2),
+\label{buch:1101:eqn:dgl2}
+\end{equation}
+was der Differentialgleichung für die Jacobische elliptische Funktion
+$\operatorname{sn}(u,k)$ bereits sehr ähnlich sieht.
+\item
+Bis auf den Faktor vor $\dot{X}^2$ ist
+\eqref{buch:1101:eqn:dgl2}
+die Differentialgleichung
+von
+$\operatorname{sn}(u,k)$.
+Um den Faktor zum Verschwinden zu bringen, schreiben wir
+$t(\tau) = \alpha\tau$.
+Die Ableitung von $Y(\tau)=X(t(\tau))$ nach $\tau$ ist
+\[
+\frac{dY}{d\tau}
+=
+\dot{X}(t(\tau))\frac{dt}{d\tau}
+=
+\alpha
+\dot{X}(t(\tau))
+\qquad\Rightarrow\qquad
+\frac{1}{\alpha^2}\frac{dY}{d\tau}
+=
+\dot{X}(t(\tau)).
+\]
+Die Differentialgleichung für $Y(\tau)$ ist
+\[
+\frac{2mk^2}{\delta x_+^2\alpha^2}
+\frac{dY}{d\tau}
+=
+(1-Y^2)(1-k^2Y^2).
+\]
+Der Koeffizient vor der Ableitung wird $1$, wenn man
+\[
+\alpha^2
+=
+\frac{2mk^2}{\delta x_+^2}
+\]
+wählt.
+Diese Differentialgleichug hat die Lösung
+\[
+Y(\tau) = \operatorname{sn}(\tau,k).
+\]
+\item
+Indem man die gefunden Grössen einsetzt kann man jetzt die Lösung
+der Differentialgleichung in geschlossener Form als
+\begin{align*}
+x(t)
+&=
+x_- X(t)
+=
+x_- \operatorname{sn}\biggl(
+t\sqrt{\frac{\delta x_+^2}{2mk^2} }
+,k
+\biggr)
+\end{align*}
+Das Produkt $\delta x_+^2$ kann auch als
+\[
+\delta x_+^2
+=
+\kappa+\sqrt{\kappa -4\delta E}
+\]
+geschrieben werden.
+\qedhere
+\end{teilaufgaben}
+\end{loesung}
+
+
diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/Makefile b/buch/chapters/110-elliptisch/uebungsaufgaben/Makefile
new file mode 100644
index 0000000..0ca5234
--- /dev/null
+++ b/buch/chapters/110-elliptisch/uebungsaufgaben/Makefile
@@ -0,0 +1,8 @@
+#
+# Makefile
+#
+# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+
+anharmonisch.pdf: anharmonisch.tex
+ pdflatex anharmonisch.tex
diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/anharmonisch.pdf b/buch/chapters/110-elliptisch/uebungsaufgaben/anharmonisch.pdf
new file mode 100644
index 0000000..4b00f4d
--- /dev/null
+++ b/buch/chapters/110-elliptisch/uebungsaufgaben/anharmonisch.pdf
Binary files differ
diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/anharmonisch.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/anharmonisch.tex
new file mode 100644
index 0000000..a00c393
--- /dev/null
+++ b/buch/chapters/110-elliptisch/uebungsaufgaben/anharmonisch.tex
@@ -0,0 +1,62 @@
+%
+% anharmonisch.tex -- Potential einer anharmonischen Schwingung
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\def\E{3}
+\def\K{0.2}
+\def\D{0.0025}
+
+\pgfmathparse{sqrt(\K/\D)}
+\xdef\xnull{\pgfmathresult}
+
+\pgfmathparse{sqrt((\K+sqrt(\K*\K-4*\E*\D))/\D)}
+\xdef\xplus{\pgfmathresult}
+\pgfmathparse{sqrt((\K-sqrt(\K*\K-4*\E*\D))/\D)}
+\xdef\xminus{\pgfmathresult}
+
+\def\xmax{13}
+
+\fill[color=darkgreen!20] (0,-1.5) rectangle (\xminus,4.7);
+\node[color=darkgreen] at ({0.5*\xminus},4.7) [below] {anziehende Kraft\strut};
+
+\fill[color=orange!20] (\xplus,-1.5) rectangle (\xmax,4.7);
+\node[color=orange] at ({0.5*(\xplus+\xmax)},4.7) [below] {abstossende\strut};
+\node[color=orange] at ({0.5*(\xplus+\xmax)},4.3) [below] {Kraft\strut};
+
+\node[color=gray] at (\xnull,4.7) [below] {verbotener Bereich\strut};
+
+\draw (-0.1,\E) -- (0.1,\E);
+\node at (-0.1,\E) [left] {$E$};
+
+\draw[color=red,line width=1pt]
+ plot[domain=0:13,samples=100]
+ ({\x},{\E-(0.5*\K-0.25*\D*\x*\x)*\x*\x});
+
+\draw[->] (-0.1,0) -- ({\xmax+0.3},0) coordinate[label={$x$}];
+\draw[->] (0,-1.5) -- (0,5) coordinate[label={right:$f(x)$}];
+
+\fill[color=blue] (\xminus,0) circle[radius=0.08];
+\node[color=blue] at (\xminus,0) [below left] {$x_-\mathstrut$};
+
+\fill[color=blue] (\xplus,0) circle[radius=0.08];
+\node[color=blue] at (\xplus,0) [below right] {$x_+\mathstrut$};
+
+\fill[color=blue] (\xnull,0) circle[radius=0.08];
+\node[color=blue] at (\xnull,0) [below] {$x_0\mathstrut$};
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/common/Makefile.inc b/buch/common/Makefile.inc
index c8b0f6e..b9461e5 100755
--- a/buch/common/Makefile.inc
+++ b/buch/common/Makefile.inc
@@ -4,9 +4,15 @@
# (c) 2021 Prof Dr Andreas Mueller, OST Ostschweizer Fachhochschule
#
-
SUBDIRECTORIES = chapters
+# change the following variables to suit your environment
+
+pdflatex = pdflatex
+bibtex = bibtex
+makeindex = makeindex
+touch = touch
+
.PHONY: images
images:
diff --git a/buch/papers/000template/main.tex b/buch/papers/000template/main.tex
index 87a5685..91b6d6e 100644
--- a/buch/papers/000template/main.tex
+++ b/buch/papers/000template/main.tex
@@ -1,7 +1,10 @@
%
% main.tex -- Paper zum Thema <000template>
%
-% (c) 2020 Hochschule Rapperswil
+% (c) 2020 Autor, OST Ostschweizer Fachhochschule
+%
+% !TEX root = ../../buch.tex
+% !TEX encoding = UTF-8
%
\chapter{Thema\label{chapter:000template}}
\lhead{Thema}
diff --git a/buch/papers/000template/teil0.tex b/buch/papers/000template/teil0.tex
index 7b9f088..65d7ae1 100644
--- a/buch/papers/000template/teil0.tex
+++ b/buch/papers/000template/teil0.tex
@@ -3,6 +3,9 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
+% !TEX root = ../../buch.tex
+% !TEX encoding = UTF-8
+%
\section{Teil 0\label{000template:section:teil0}}
\rhead{Teil 0}
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
diff --git a/buch/papers/000template/teil1.tex b/buch/papers/000template/teil1.tex
index 00d3058..0f8dfae 100644
--- a/buch/papers/000template/teil1.tex
+++ b/buch/papers/000template/teil1.tex
@@ -3,6 +3,9 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
+% !TEX root = ../../buch.tex
+% !TEX encoding = UTF-8
+%
\section{Teil 1
\label{000template:section:teil1}}
\rhead{Problemstellung}
diff --git a/buch/papers/000template/teil2.tex b/buch/papers/000template/teil2.tex
index 471adae..496557f 100644
--- a/buch/papers/000template/teil2.tex
+++ b/buch/papers/000template/teil2.tex
@@ -3,6 +3,9 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
+% !TEX root = ../../buch.tex
+% !TEX encoding = UTF-8
+%
\section{Teil 2
\label{000template:section:teil2}}
\rhead{Teil 2}
diff --git a/buch/papers/000template/teil3.tex b/buch/papers/000template/teil3.tex
index 4697813..ef2aa75 100644
--- a/buch/papers/000template/teil3.tex
+++ b/buch/papers/000template/teil3.tex
@@ -3,6 +3,9 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
+% !TEX root = ../../buch.tex
+% !TEX encoding = UTF-8
+%
\section{Teil 3
\label{000template:section:teil3}}
\rhead{Teil 3}
diff --git a/buch/papers/dreieck/images/beta.pdf b/buch/papers/dreieck/images/beta.pdf
index c3ab4f6..cd5ed80 100644
--- a/buch/papers/dreieck/images/beta.pdf
+++ b/buch/papers/dreieck/images/beta.pdf
Binary files differ
diff --git a/buch/papers/dreieck/images/beta.tex b/buch/papers/dreieck/images/beta.tex
index 50509ee..f0ffdf0 100644
--- a/buch/papers/dreieck/images/beta.tex
+++ b/buch/papers/dreieck/images/beta.tex
@@ -23,7 +23,8 @@
\definecolor{coloreight}{rgb}{0.0,0.8,0.8}
\definecolor{colornine}{rgb}{0.0,0.8,0.2}
\definecolor{colorten}{rgb}{0.2,0.4,0.0}
-\definecolor{coloreleven}{rgb}{1.0,0.8,0.4}
+\definecolor{coloreleven}{rgb}{0.6,1.0,0.0}
+\definecolor{colortwelve}{rgb}{1.0,0.8,0.4}
\def\achsen{
\foreach \x in {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}{
@@ -47,24 +48,24 @@
}
\def\farbcoord#1#2{
- ({\dx*(0.7+((#1-1)/4)*0.27)},{\dx*(0.15+((#2-1)/4)*0.27)})
+ ({\dx*(0.63+((#1)/5)*0.27)},{\dx*(0.18+((#2)/5)*0.27)})
}
\def\farbviereck{
- \foreach \x in {1,2,3,4,5}{
- \draw[color=gray!30] \farbcoord{\x}{1} -- \farbcoord{\x}{5};
- \draw[color=gray!30] \farbcoord{1}{\x} -- \farbcoord{5}{\x};
+ \foreach \x in {1,2,3,4}{
+ \draw[color=gray!30] \farbcoord{\x}{0} -- \farbcoord{\x}{4};
+ \draw[color=gray!30] \farbcoord{0}{\x} -- \farbcoord{4}{\x};
}
- \draw[->] \farbcoord{1}{1} -- \farbcoord{5.4}{1}
+ \draw[->] \farbcoord{0}{0} -- \farbcoord{4.4}{0}
coordinate[label={$a$}];
- \draw[->] \farbcoord{1}{1} -- \farbcoord{1}{5.4}
+ \draw[->] \farbcoord{0}{0} -- \farbcoord{0}{4.4}
coordinate[label={left: $b$}];
- \foreach \x in {1,2,3,4,5}{
- \node[color=gray] at \farbcoord{5}{\x} [right] {\tiny $b=\x$};
- \fill[color=white,opacity=0.7]
- \farbcoord{(\x-0.1)}{4.3}
- rectangle
- \farbcoord{(\x+0.1)}{5};
- \node[color=gray] at \farbcoord{\x}{5} [left,rotate=90]
+ \foreach \x in {1,2,3,4}{
+ \node[color=gray] at \farbcoord{4}{\x} [right] {\tiny $b=\x$};
+ %\fill[color=white,opacity=0.7]
+ % \farbcoord{(\x-0.1)}{3.3}
+ % rectangle
+ % \farbcoord{(\x+0.1)}{4};
+ \node[color=gray] at \farbcoord{\x}{4} [right,rotate=90]
{\tiny $a=\x$};
}
}
@@ -74,23 +75,26 @@
\begin{tikzpicture}[>=latex,thick,scale=\skala]
-\def\dx{1}
+\def\dx{1.1}
\def\dy{0.1}
\def\opa{0.1}
-\def\betamax{4.2}
-
-\fill[color=colorone,opacity=\opa] (0,0) -- \betaaa -- (\dx,0) -- cycle;
-\fill[color=colortwo,opacity=\opa] (0,0) -- \betabb -- (\dx,0) -- cycle;
-\fill[color=colorthree,opacity=\opa] (0,0) -- \betacc -- (\dx,0) -- cycle;
-\fill[color=colorfour,opacity=\opa] (0,0) -- \betadd -- (\dx,0) -- cycle;
-\fill[color=colorfive,opacity=\opa] (0,0) -- \betaee -- (\dx,0) -- cycle;
-\fill[color=colorsix,opacity=\opa] (0,0) -- \betaff -- (\dx,0) -- cycle;
-\fill[color=colorseven,opacity=\opa] (0,0) -- \betagg -- (\dx,0) -- cycle;
-\fill[color=coloreight,opacity=\opa] (0,0) -- \betahh -- (\dx,0) -- cycle;
-\fill[color=colornine,opacity=\opa] (0,0) -- \betaii -- (\dx,0) -- cycle;
-\fill[color=colorten,opacity=\opa] (0,0) -- \betajj -- (\dx,0) -- cycle;
+\def\betamax{4.9}
+
+\begin{scope}
+\clip (0,0) rectangle ({1*\dx},{\betamax*\dy});
+\fill[color=colorone,opacity=\opa] (0,0) -- \betaaa -- (\dx,0) -- cycle;
+\fill[color=colortwo,opacity=\opa] (0,0) -- \betabb -- (\dx,0) -- cycle;
+\fill[color=colorthree,opacity=\opa] (0,0) -- \betacc -- (\dx,0) -- cycle;
+\fill[color=colorfour,opacity=\opa] (0,0) -- \betadd -- (\dx,0) -- cycle;
+\fill[color=colorfive,opacity=\opa] (0,0) -- \betaee -- (\dx,0) -- cycle;
+\fill[color=colorsix,opacity=\opa] (0,0) -- \betaff -- (\dx,0) -- cycle;
+\fill[color=colorseven,opacity=\opa] (0,0) -- \betagg -- (\dx,0) -- cycle;
+\fill[color=coloreight,opacity=\opa] (0,0) -- \betahh -- (\dx,0) -- cycle;
+\fill[color=colornine,opacity=\opa] (0,0) -- \betaii -- (\dx,0) -- cycle;
+\fill[color=colorten,opacity=\opa] (0,0) -- \betajj -- (\dx,0) -- cycle;
\fill[color=coloreleven,opacity=\opa] (0,0) -- \betakk -- (\dx,0) -- cycle;
+\fill[color=colortwelve,opacity=\opa] (0,0) -- \betall -- (\dx,0) -- cycle;
\draw[color=colorone] \betaaa;
\draw[color=colortwo] \betabb;
@@ -103,11 +107,15 @@
\draw[color=colornine] \betaii;
\draw[color=colorten] \betajj;
\draw[color=coloreleven] \betakk;
+\draw[color=colortwelve] \betall;
+
+\end{scope}
\achsen
\farbviereck
+\farbpunkt{\alphatwelve}{\betatwelve}{colortwelve}
\farbpunkt{\alphaeleven}{\betaeleven}{coloreleven}
\farbpunkt{\alphaten}{\betaten}{colorten}
\farbpunkt{\alphanine}{\betanine}{colornine}
@@ -124,88 +132,102 @@
\def\betamax{4.9}
\begin{scope}[yshift=-0.6cm]
-\fill[color=colorone,opacity=\opa] (0,0) -- \betaaa -- (\dx,0) -- cycle;
-\fill[color=colortwo,opacity=\opa] (0,0) -- \betaab -- (\dx,0) -- cycle;
-\fill[color=colorthree,opacity=\opa] (0,0) -- \betaac -- (\dx,0) -- cycle;
-\fill[color=colorfour,opacity=\opa] (0,0) -- \betaad -- (\dx,0) -- cycle;
-\fill[color=colorfive,opacity=\opa] (0,0) -- \betaae -- (\dx,0) -- cycle;
-\fill[color=colorsix,opacity=\opa] (0,0) -- \betaaf -- (\dx,0) -- cycle;
-\fill[color=colorseven,opacity=\opa] (0,0) -- \betaag -- (\dx,0) -- cycle;
-\fill[color=coloreight,opacity=\opa] (0,0) -- \betaah -- (\dx,0) -- cycle;
-\fill[color=colornine,opacity=\opa] (0,0) -- \betaai -- (\dx,0) -- cycle;
-\fill[color=colorten,opacity=\opa] (0,0) -- \betaaj -- (\dx,0) -- cycle;
-\fill[color=coloreleven,opacity=\opa] (0,0) -- \betaak -- (\dx,0) -- cycle;
-\draw[color=colorone] \betaaa;
-\draw[color=colortwo] \betaab;
-\draw[color=colorthree] \betaac;
-\draw[color=colorfour] \betaad;
-\draw[color=colorfive] \betaae;
-\draw[color=colorsix] \betaaf;
-\draw[color=colorseven] \betaag;
-\draw[color=coloreight] \betaah;
-\draw[color=colornine] \betaai;
-\draw[color=colorten] \betaaj;
-\draw[color=coloreleven] \betaak;
+\begin{scope}
+\clip (0,0) rectangle ({1*\dx},{\betamax*\dy});
+\fill[color=colorone,opacity=\opa] (0,0) -- \betaea -- (\dx,0) -- cycle;
+\fill[color=colortwo,opacity=\opa] (0,0) -- \betaeb -- (\dx,0) -- cycle;
+\fill[color=colorthree,opacity=\opa] (0,0) -- \betaec -- (\dx,0) -- cycle;
+\fill[color=colorfour,opacity=\opa] (0,0) -- \betaed -- (\dx,0) -- cycle;
+\fill[color=colorfive,opacity=\opa] (0,0) -- \betaee -- (\dx,0) -- cycle;
+\fill[color=colorsix,opacity=\opa] (0,0) -- \betaef -- (\dx,0) -- cycle;
+\fill[color=colorseven,opacity=\opa] (0,0) -- \betaeg -- (\dx,0) -- cycle;
+\fill[color=coloreight,opacity=\opa] (0,0) -- \betaeh -- (\dx,0) -- cycle;
+\fill[color=colornine,opacity=\opa] (0,0) -- \betaei -- (\dx,0) -- cycle;
+\fill[color=colorten,opacity=\opa] (0,0) -- \betaej -- (\dx,0) -- cycle;
+\fill[color=coloreleven,opacity=\opa] (0,0) -- \betaek -- (\dx,0) -- cycle;
+\fill[color=colortwelve,opacity=\opa] (0,0) -- \betael -- (\dx,0) -- cycle;
+
+\draw[color=colorone] \betaea;
+\draw[color=colortwo] \betaeb;
+\draw[color=colorthree] \betaec;
+\draw[color=colorfour] \betaed;
+\draw[color=colorfive] \betaee;
+\draw[color=colorsix] \betaef;
+\draw[color=colorseven] \betaeg;
+\draw[color=coloreight] \betaeh;
+\draw[color=colornine] \betaei;
+\draw[color=colorten] \betaej;
+\draw[color=coloreleven] \betaek;
+\draw[color=colortwelve] \betael;
+\end{scope}
\achsen
\farbviereck
-\farbpunkt{\alphaone}{\betaeleven}{coloreleven}
-\farbpunkt{\alphaone}{\betaten}{colorten}
-\farbpunkt{\alphaone}{\betanine}{colornine}
-\farbpunkt{\alphaone}{\betaeight}{coloreight}
-\farbpunkt{\alphaone}{\betaseven}{colorseven}
-\farbpunkt{\alphaone}{\betasix}{colorsix}
-\farbpunkt{\alphaone}{\betafive}{colorfive}
-\farbpunkt{\alphaone}{\betafour}{colorfour}
-\farbpunkt{\alphaone}{\betathree}{colorthree}
-\farbpunkt{\alphaone}{\betatwo}{colortwo}
-\farbpunkt{\alphaone}{\betaone}{colorone}
+\farbpunkt{\alphafive}{\betatwelve}{colortwelve}
+\farbpunkt{\alphafive}{\betaeleven}{coloreleven}
+\farbpunkt{\alphafive}{\betaten}{colorten}
+\farbpunkt{\alphafive}{\betanine}{colornine}
+\farbpunkt{\alphafive}{\betaeight}{coloreight}
+\farbpunkt{\alphafive}{\betaseven}{colorseven}
+\farbpunkt{\alphafive}{\betasix}{colorsix}
+\farbpunkt{\alphafive}{\betafive}{colorfive}
+\farbpunkt{\alphafive}{\betafour}{colorfour}
+\farbpunkt{\alphafive}{\betathree}{colorthree}
+\farbpunkt{\alphafive}{\betatwo}{colortwo}
+\farbpunkt{\alphafive}{\betaone}{colorone}
\end{scope}
\begin{scope}[yshift=-1.2cm]
-\fill[color=colorone,opacity=\opa] (0,0) -- \betaak -- (\dx,0) -- cycle;
-\fill[color=colortwo,opacity=\opa] (0,0) -- \betabk -- (\dx,0) -- cycle;
-\fill[color=colorthree,opacity=\opa] (0,0) -- \betack -- (\dx,0) -- cycle;
-\fill[color=colorfour,opacity=\opa] (0,0) -- \betadk -- (\dx,0) -- cycle;
-\fill[color=colorfive,opacity=\opa] (0,0) -- \betaek -- (\dx,0) -- cycle;
-\fill[color=colorsix,opacity=\opa] (0,0) -- \betafk -- (\dx,0) -- cycle;
-\fill[color=colorseven,opacity=\opa] (0,0) -- \betagk -- (\dx,0) -- cycle;
-\fill[color=coloreight,opacity=\opa] (0,0) -- \betahk -- (\dx,0) -- cycle;
-\fill[color=colornine,opacity=\opa] (0,0) -- \betaik -- (\dx,0) -- cycle;
-\fill[color=colorten,opacity=\opa] (0,0) -- \betajk -- (\dx,0) -- cycle;
-\fill[color=coloreleven,opacity=\opa] (0,0) -- \betakk -- (\dx,0) -- cycle;
-\draw[color=colorone] \betaak;
-\draw[color=colortwo] \betabk;
-\draw[color=colorthree] \betack;
-\draw[color=colorfour] \betadk;
-\draw[color=colorfive] \betaek;
-\draw[color=colorsix] \betafk;
-\draw[color=colorseven] \betagk;
-\draw[color=coloreight] \betahk;
-\draw[color=colornine] \betaik;
-\draw[color=colorten] \betajk;
-\draw[color=coloreleven] \betakk;
+\begin{scope}
+\clip (0,0) rectangle ({1*\dx},{\betamax*\dy});
+\fill[color=colorone,opacity=\opa] (0,0) -- \betaal -- (\dx,0) -- cycle;
+\fill[color=colortwo,opacity=\opa] (0,0) -- \betabl -- (\dx,0) -- cycle;
+\fill[color=colorthree,opacity=\opa] (0,0) -- \betacl -- (\dx,0) -- cycle;
+\fill[color=colorfour,opacity=\opa] (0,0) -- \betadl -- (\dx,0) -- cycle;
+\fill[color=colorfive,opacity=\opa] (0,0) -- \betael -- (\dx,0) -- cycle;
+\fill[color=colorsix,opacity=\opa] (0,0) -- \betafl -- (\dx,0) -- cycle;
+\fill[color=colorseven,opacity=\opa] (0,0) -- \betagl -- (\dx,0) -- cycle;
+\fill[color=coloreight,opacity=\opa] (0,0) -- \betahl -- (\dx,0) -- cycle;
+\fill[color=colornine,opacity=\opa] (0,0) -- \betail -- (\dx,0) -- cycle;
+\fill[color=colorten,opacity=\opa] (0,0) -- \betajl -- (\dx,0) -- cycle;
+\fill[color=coloreleven,opacity=\opa] (0,0) -- \betakl -- (\dx,0) -- cycle;
+\fill[color=colortwelve,opacity=\opa] (0,0) -- \betall -- (\dx,0) -- cycle;
+
+\draw[color=colorone] \betaal;
+\draw[color=colortwo] \betabl;
+\draw[color=colorthree] \betacl;
+\draw[color=colorfour] \betadl;
+\draw[color=colorfive] \betael;
+\draw[color=colorsix] \betafl;
+\draw[color=colorseven] \betagl;
+\draw[color=coloreight] \betahl;
+\draw[color=colornine] \betail;
+\draw[color=colorten] \betajl;
+\draw[color=coloreleven] \betakl;
+\draw[color=colortwelve] \betall;
+\end{scope}
\achsen
\farbviereck
-\farbpunkt{\alphaeleven}{\betaeleven}{coloreleven}
-\farbpunkt{\alphaten}{\betaeleven}{colorten}
-\farbpunkt{\alphanine}{\betaeleven}{colornine}
-\farbpunkt{\alphaeight}{\betaeleven}{coloreight}
-\farbpunkt{\alphaseven}{\betaeleven}{colorseven}
-\farbpunkt{\alphasix}{\betaeleven}{colorsix}
-\farbpunkt{\alphafive}{\betaeleven}{colorfive}
-\farbpunkt{\alphafour}{\betaeleven}{colorfour}
-\farbpunkt{\alphathree}{\betaeleven}{colorthree}
-\farbpunkt{\alphatwo}{\betaeleven}{colortwo}
-\farbpunkt{\alphaone}{\betaeleven}{colorone}
+\farbpunkt{\alphatwelve}{\betatwelve}{colortwelve}
+\farbpunkt{\alphaeleven}{\betatwelve}{coloreleven}
+\farbpunkt{\alphaten}{\betatwelve}{colorten}
+\farbpunkt{\alphanine}{\betatwelve}{colornine}
+\farbpunkt{\alphaeight}{\betatwelve}{coloreight}
+\farbpunkt{\alphaseven}{\betatwelve}{colorseven}
+\farbpunkt{\alphasix}{\betatwelve}{colorsix}
+\farbpunkt{\alphafive}{\betatwelve}{colorfive}
+\farbpunkt{\alphafour}{\betatwelve}{colorfour}
+\farbpunkt{\alphathree}{\betatwelve}{colorthree}
+\farbpunkt{\alphatwo}{\betatwelve}{colortwo}
+\farbpunkt{\alphaone}{\betatwelve}{colorone}
\end{scope}
diff --git a/buch/papers/dreieck/images/betadist.m b/buch/papers/dreieck/images/betadist.m
index 9ff78ed..5b466a6 100644
--- a/buch/papers/dreieck/images/betadist.m
+++ b/buch/papers/dreieck/images/betadist.m
@@ -5,24 +5,32 @@
#
global N;
N = 201;
-global n;
-n = 11;
+global nmin;
+global nmax;
+nmin = -4;
+nmax = 7;
+n = nmax - nmin + 1
+A = 3;
-t = (0:n-1) / (n-1)
-alpha = 1 + 4 * t.^2
+t = (nmin:nmax) / nmax;
+alpha = 1 + A * t .* abs(t)
+#alpha(1) = 0.01;
#alpha = [ 1, 1.03, 1.05, 1.1, 1.25, 1.5, 2, 2.5, 3, 4, 5 ];
beta = alpha;
names = [ "one"; "two"; "three"; "four"; "five"; "six"; "seven"; "eight";
- "nine"; "ten"; "eleven" ]
+ "nine"; "ten"; "eleven"; "twelve" ]
function retval = Beta(a, b, x)
retval = x^(a-1) * (1-x)^(b-1) / beta(a, b);
+ if (retval > 100)
+ retval = 100
+ end
end
function plotbeta(fn, a, b, name)
global N;
- fprintf(fn, "\\def\\beta%s{\n", name);
+ fprintf(fn, "\\def\\beta%s{\n", strtrim(name));
fprintf(fn, "\t({%.4f*\\dx},{%.4f*\\dy})", 0, Beta(a, b, 0));
for x = (1:N-1)/(N-1)
X = (1-cos(pi * x))/2;
@@ -35,8 +43,8 @@ end
fn = fopen("betapaths.tex", "w");
for i = (1:n)
- fprintf(fn, "\\def\\alpha%s{%f}\n", names(i,:), alpha(i));
- fprintf(fn, "\\def\\beta%s{%f}\n", names(i,:), beta(i));
+ fprintf(fn, "\\def\\alpha%s{%f}\n", strtrim(names(i,:)), alpha(i));
+ fprintf(fn, "\\def\\beta%s{%f}\n", strtrim(names(i,:)), beta(i));
end
for i = (1:n)
diff --git a/buch/papers/dreieck/teil1.tex b/buch/papers/dreieck/teil1.tex
index 5e7090b..4abe2e1 100644
--- a/buch/papers/dreieck/teil1.tex
+++ b/buch/papers/dreieck/teil1.tex
@@ -5,416 +5,7 @@
%
\section{Ordnungsstatistik und Beta-Funktion
\label{dreieck:section:ordnungsstatistik}}
-\rhead{Ordnungsstatistik und Beta-Funktion}
-In diesem Abschnitt ist $X$ eine Zufallsvariable mit der Verteilungsfunktion
-$F_X(x)$, und $X_i$, $1\le i\le n$ sei ein Stichprobe von unabhängigen
-Zufallsvariablen, die wie $X$ verteilt sind.
-Ziel ist, die Verteilungsfunktion und die Wahrscheinlichkeitsdichte
-des grössten, zweitgrössten, $k$-t-grössten Wertes in der Stichprobe
-zu finden.
-Wir schreiben $[n]=\{1,\dots,n\}$ für die Menge der natürlichen
-Zahlen von zwischen $1$ und $n$.
+\rhead{}
-\subsection{Verteilung von $\operatorname{max}(X_1,\dots,X_n)$ und
-$\operatorname{min}(X_1,\dots,X_n)$
-\label{dreieck:subsection:minmax}}
-Die Verteilungsfunktion von $\operatorname{max}(X_1,\dots,X_n)$ hat
-den Wert
-\begin{align*}
-F_{\operatorname{max}(X_1,\dots,X_n)}(x)
-&=
-P(\operatorname{max}(X_1,\dots,X_n) \le x)
-\\
-&=
-P(X_1\le x\wedge \dots \wedge X_n\le x)
-\\
-&=
-P(X_1\le x) \cdot \ldots \cdot P(X_n\le x)
-\\
-&=
-P(X\le x)^n
-=
-F_X(x)^n.
-\end{align*}
-Für die Gleichverteilung ist
-\[
-F_{\text{equi}}(x)
-=
-\begin{cases}
-0&\qquad x< 0
-\\
-x&\qquad 0\le x\le 1
-\\
-1&\qquad 1<x.
-\end{cases}
-\]
-In diesem Fall ist Verteilung des Maximums
-\[
-F_{\operatorname{max}(X_1,\dots,X_n)}(x)
-=
-\begin{cases}
-0&\qquad x<0\\
-x^n&\qquad 0\le x\le 1\\
-1&\qquad 1 < x.
-\end{cases}
-\]
-Mit der zugehörigen Wahrscheinlichkeitsdichte
-\[
-\varphi_{\operatorname{max}(X_1,\dots,X_n)}
-=
-\frac{d}{dx}
-F_{\operatorname{max}(X_1,\dots,X_n)}(x)
-=
-\begin{cases}
-nx^{n-1}&\qquad 0\le x\le 1\\
-0 &\qquad \text{sonst}
-\end{cases}
-\]
-kann man zum Beispiel den Erwartungswert
-\[
-E(\operatorname{max}(X_1,\dots,X_n))
-=
-\int_{-\infty}^\infty
-x
-\varphi_{\operatorname{X_1,\dots,X_n}}(x)
-\,dx
-=
-\int_{0}^1 x\cdot nx^{n-1}\,dt
-=
-\biggl[
-\frac{n}{n+1}x^{n+1}
-\biggr]_0^1
-=
-\frac{n}{n+1}
-\]
-berechnen.
-
-Ganz analog kann man auch die Verteilungsfunktion von
-$\operatorname{min}(X_1,\dots,X_n)$ bestimmen.
-Sie ist
-\begin{align*}
-F_{\operatorname{min}(X_1,\dots,X_n)}(x)
-&=
-P(x\le X_1\vee \dots \vee x\le X_n)
-\\
-&=
-1-
-P(x > X_1\wedge \dots \wedge x > X_n)
-\\
-&=
-1-
-(1-P(x\le X_1)) \cdot\ldots\cdot (1-P(x\le X_n))
-\\
-&=
-1-(1-F_X(x))^n,
-\end{align*}
-Im Speziellen für im Intervall $[0,1]$ gleichverteilte $X_i$ ist die
-Verteilungsfunktion des Minimums
-\[
-F_{\operatorname{min}(X_1,\dots,X_n)}(x)
-=
-\begin{cases}
-0 &\qquad x<0 \\
-1-(1-x)^n&\qquad 0\le x\le 1\\
-1 &\qquad 1 < x
-\end{cases}
-\]
-mit Wahrscheinlichkeitsdichte
-\[
-\varphi_{\operatorname{min}(X_1,\dots,X_n)}
-=
-\frac{d}{dx}
-F_{\operatorname{min}(X_1,\dots,X_n)}
-=
-\begin{cases}
-n(1-x)^{n-1}&\qquad 0\le x\le 1\\
-0 &\qquad \text{sonst}
-\end{cases}
-\]
-und Erwartungswert
-\begin{align*}
-E(\operatorname{min}(X_1,\dots,X_n)
-&=
-\int_{-\infty}^\infty x\varphi_{\operatorname{min}(X_1,\dots,X_n)}(x)\,dx
-=
-\int_0^1 x\cdot n(1-x)^{n-1}\,dx
-\\
-&=
-\bigl[ -x(1-x)^n \bigr]_0^1 + \int_0^1 (1-x)^n\,dx
-=
-\biggl[
--
-\frac{1}{n+1}
-(1-x)^{n+1}
-\biggr]_0^1
-=
-\frac{1}{n+1}.
-\end{align*}
-Es ergibt sich daraus als natürlich Verallgemeinerung die Frage nach
-der Verteilung des zweitegrössten oder zweitkleinsten Wertes unter den
-Werten $X_i$.
-
-\subsection{Der $k$-t-grösste Wert}
-Sie wieder $X_i$ eine Stichprobe von $n$ unabhängigen wie $X$ verteilten
-Zufallsvariablen.
-Diese werden jetzt der Grösse nach sortiert, die sortierten Werte werden
-mit
-\[
-X_{1:n} \le X_{2:n} \le \dots \le X_{(n-1):n} \le X_{n:n}
-\]
-bezeichnet.
-Die Grössen $X_{k:n}$ sind Zufallsvariablen, sie heissen die $k$-ten
-Ordnungsstatistiken.
-Die in Abschnitt~\ref{dreieck:subsection:minmax} behandelten Zufallsvariablen
-$\operatorname{min}(X_1,\dots,X_n)$
-und
-$\operatorname{max}(X_1,\dots,X_n)$
-sind die Fälle
-\begin{align*}
-X_{1:n} &= \operatorname{min}(X_1,\dots,X_n) \\
-X_{n:n} &= \operatorname{max}(X_1,\dots,X_n).
-\end{align*}
-
-Um den Wert der Verteilungsfunktion von $X_{k:n}$ zu berechnen, müssen wir
-die Wahrscheinlichkeit bestimmen, dass $k$ der $n$ Werte $X_i$ $x$ nicht
-übersteigen.
-Der $k$-te Wert $X_{k:n}$ übersteigt genau dann $x$ nicht, wenn
-mindestens $k$ der Zufallswerte $X_i$ $x$ nicht übersteigen, also
-\[
-P(X_{k:n} \le x)
-=
-P\left(
-|\{i\in[n]\,|\, X_i\le x\}| \ge k
-\right).
-\]
-
-Das Ereignis $\{X_i\le x\}$ ist eine Bernoulli-Experiment, welches mit
-Wahrscheinlichkeit $F_X(x)$ eintritt.
-Die Anzahl der Zufallsvariablen $X_i$, die $x$ übertreffen, ist also
-Binomialverteilt mit $p=F_X(x)$.
-Damit haben wir gefunden, dass mit Wahrscheinlichkeit
-\begin{equation}
-F_{X_{k:n}}(x)
-=
-P(X_{k:n}\le x)
-=
-\sum_{i=k}^n \binom{n}{i}F_X(x)^i (1-F_X(x))^{n-i}
-\label{dreieck:eqn:FXkn}
-\end{equation}
-mindestens $k$ der Zufallsvariablen den Wert $x$ überschreiten.
-
-\subsubsection{Wahrscheinlichkeitsdichte der Ordnungsstatistik}
-Die Wahrscheinlichkeitsdichte der Ordnungsstatistik kann durch Ableitung
-von \eqref{dreieck:eqn:FXkn} gefunden, werden, sie ist
-\begin{align*}
-\varphi_{X_{k:n}}(x)
-&=
-\frac{d}{dx}
-F_{X_{k:n}}(x)
-\\
-&=
-\sum_{i=k}^n
-\binom{n}{i}
-\bigl(
-iF_X(x)^{i-1}\varphi_X(x) (1-F_X(x))^{n-i}
--
-F_X(x)^k
-(n-i)
-(1-F_X(x))^{n-i-1}
-\varphi_X(x)
-\bigr)
-\\
-&=
-\sum_{i=k}^n
-\binom{n}{i}
-\varphi_X(x)
-F_X(x)^{i-1}(1-F_X(x))^{n-i-1}
-\bigl(
-iF_X(x)-(n-i)(1-F_X(x))
-\bigr)
-\\
-&=
-\varphi_X(x)
-\biggl(
-\sum_{i=k}^n i\binom{n}{i} F_X(x)^{i-1}(1-F_X(x))^{n-i}
--
-\sum_{j=k}^n (n-j)\binom{n}{j} F_X(x)^{j}(1-F_X(x))^{n-j-1}
-\biggr)
-\\
-&=
-\varphi_X(x)
-\biggl(
-\sum_{i=k}^n i\binom{n}{i} F_X(x)^{i-1}(1-F_X(x))^{n-i}
--
-\sum_{i=k+1}^{n+1} (n-i+1)\binom{n}{i-1} F_X(x)^{i-1}(1-F_X(x))^{n-i}
-\biggr)
-\\
-&=
-\varphi_X(x)
-\biggl(
-k\binom{n}{k}F_X(x)^{k-1}(1-F_X(x))^{n-k}
-+
-\sum_{i=k+1}^{n+1}
-\left(
-i\binom{n}{i}
--
-(n-i+1)\binom{n}{i-1}
-\right)
-F_X(x)^{i-1}(1-F_X(x))^{n-i}
-\biggr)
-\end{align*}
-Mit den wohlbekannten Identitäten für die Binomialkoeffizienten
-\begin{align*}
-i\binom{n}{i}
--
-(n-i+1)\binom{n}{i-1}
-&=
-n\binom{n-1}{i-1}
--
-n
-\binom{n-1}{i-1}
-=
-0
-\end{align*}
-folgt jetzt
-\begin{align*}
-\varphi_{X_{k:n}}(x)
-&=
-\varphi_X(x)k\binom{n}{k} F_X(x)^{k-1}(1-F_X(x))^{n-k}(x).
-\intertext{Im Speziellen für gleichverteilte Zufallsvariablen $X_i$ ist
-}
-\varphi_{X_{k:n}}(x)
-&=
-k\binom{n}{k} x^{k-1}(1-x)^{n-k}.
-\end{align*}
-Dies ist die Wahrscheinlichkeitsdichte einer Betaverteilung
-\[
-\beta(k,n-k+1)(x)
-=
-\frac{1}{B(k,n-k+1)}
-x^{k-1}(1-x)^{n-k}.
-\]
-Tatsächlich ist die Normierungskonstante
-\begin{align}
-\frac{1}{B(k,n-k+1)}
-&=
-\frac{\Gamma(n+1)}{\Gamma(k)\Gamma(n-k+1)}
-=
-\frac{n!}{(k-1)!(n-k)!}.
-\label{dreieck:betaverteilung:normierung1}
-\end{align}
-Andererseits ist
-\[
-k\binom{n}{k}
-=
-k\frac{n!}{k!(n-k)!}
-=
-\frac{n!}{(k-1)!(n-k)!},
-\]
-in Übereinstimmung mit~\eqref{dreieck:betaverteilung:normierung1}.
-Die Verteilungsfunktion und die Wahrscheinlichkeitsdichte der
-Ordnungsstatistik sind in Abbildung~\ref{dreieck:fig:order} dargestellt.
-
-\begin{figure}
-\centering
-\includegraphics{papers/dreieck/images/order.pdf}
-\caption{Verteilungsfunktion und Wahrscheinlichkeitsdichte der
-Ordnungsstatistiken $X_{k:n}$ einer gleichverteilung Zuvallsvariable
-mit $n=10$.
-\label{dreieck:fig:order}}
-\end{figure}
-
-\subsubsection{Erwartungswert}
-Mit der Wahrscheinlichkeitsdichte kann man jetzt auch den Erwartungswerte
-der $k$-ten Ordnungsstatistik bestimmen.
-Die Rechnung ergibt:
-\begin{align*}
-E(X_{k:n})
-&=
-\int_0^1 x\cdot k\binom{n}{k} x^{k-1}(1-x)^{n-k}\,dx
-=
-k
-\binom{n}{k}
-\int_0^1
-x^{k}(1-x)^{n-k}\,dx.
-\intertext{Dies ist das Beta-Integral}
-&=
-k\binom{n}{k}
-B(k+1,n-k+1)
-\intertext{welches man durch Gamma-Funktionen bzw.~durch Fakultäten wie in}
-&=
-k\frac{n!}{k!(n-k)!}
-\frac{\Gamma(k+1)\Gamma(n-k+1)}{n+2}
-=
-k\frac{n!}{k!(n-k)!}
-\frac{k!(n-k)!}{(n+1)!}
-=
-\frac{k}{n+1}
-\end{align*}
-ausdrücken kann.
-Die Erwartungswerte haben also regelmässige Abstände, sie sind in
-Abbildung~\ref{dreieck:fig:order} als blaue vertikale Linien eingezeichnet.
-
-\subsubsection{Varianz}
-Auch die Varianz lässt sich einfach berechnen, dazu muss zunächst
-der Erwartungswert von $X_{k:n}^2$ bestimmt werden.
-Er ist
-\begin{align*}
-E(X_{k:n}^2)
-&=
-\int_0^1 x^2\cdot k\binom{n}{k} x^{k-1}(1-x)^{n-k}\,dx
-=
-k
-\binom{n}{k}
-\int_0^1
-x^{k+1}(1-x)^{n-k}\,dx.
-\intertext{Auch dies ist ein Beta-Integral, nämlich}
-&=
-k\binom{n}{k}
-B(k+2,n-k+1)
-=
-k\frac{n!}{k!(n-k)!}
-\frac{(k+1)!(n-k)!}{(n+2)!}
-=
-\frac{k(k+1)}{(n+1)(n+2)}.
-\end{align*}
-Die Varianz wird damit
-\begin{align}
-\operatorname{var}(X_{k:n})
-&=
-E(X_{k:n}^2) - E(X_{k:n})^2
-\notag
-\\
-&
-=
-\frac{k(k+1)}{(n+1)(n+2)}-\frac{k^2}{(n+1)^2}
-=
-\frac{k(k+1)(n+1)-k^2(n+2)}{(n+1)^2(n+2)}
-=
-\frac{k(n-k+1)}{(n+1)^2(n+2)}.
-\label{dreieck:eqn:ordnungsstatistik:varianz}
-\end{align}
-In Abbildung~\ref{dreieck:fig:order} ist die Varianz der
-Ordnungsstatistik $X_{k:n}$ für $k=7$ und $n=10$ als oranges
-Rechteck dargestellt.
-
-\begin{figure}
-\centering
-\includegraphics[width=0.84\textwidth]{papers/dreieck/images/beta.pdf}
-\caption{Wahrscheinlichkeitsdichte der Beta-Verteilung
-$\beta(a,b,x)$
-für verschiedene Werte der Parameter $a$ und $b$.
-Die Werte des Parameters für einen Graphen einer Beta-Verteilung
-sind als Punkt im kleinen Quadrat rechts
-im Graphen als Punkt mit der gleichen Farbe dargestellt.
-\label{dreieck:fig:betaverteilungn}}
-\end{figure}
-
-Die Formel~\eqref{dreieck:eqn:ordnungsstatistik:varianz}
-besagt auch, dass die Varianz der proportional ist zu $k((n+1)-k)$.
-Dieser Ausdruck ist am grössten für $k=(n+1)/2$, die Varianz ist
-also grösser für die ``mittleren'' Ordnungstatistiken als für die
-extremen $X_{1:n}=\operatorname{min}(X_1,\dots,X_n)$ und
-$X_{n:n}=\operatorname{max}(X_1,\dots,X_n)$.
diff --git a/buch/papers/kugel/Makefile.inc b/buch/papers/kugel/Makefile.inc
index d926229..50d6825 100644
--- a/buch/papers/kugel/Makefile.inc
+++ b/buch/papers/kugel/Makefile.inc
@@ -4,11 +4,7 @@
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
dependencies-kugel = \
- papers/kugel/packages.tex \
+ papers/kugel/packages.tex \
papers/kugel/main.tex \
- papers/kugel/references.bib \
- papers/kugel/teil0.tex \
- papers/kugel/teil1.tex \
- papers/kugel/teil2.tex \
- papers/kugel/teil3.tex
+ papers/kugel/references.bib
diff --git a/buch/papers/kugel/main.tex b/buch/papers/kugel/main.tex
index 0e632ec..06368af 100644
--- a/buch/papers/kugel/main.tex
+++ b/buch/papers/kugel/main.tex
@@ -1,36 +1,39 @@
%
+
% main.tex -- Paper zum Thema <kugel>
%
% (c) 2020 Hochschule Rapperswil
%
-\chapter{Thema\label{chapter:kugel}}
-\lhead{Thema}
+\chapter{Recurrence Relations for Spherical Harmonics in Quantum Mechanics\label{chapter:kugel}}
+\lhead{Recurrence Relations in Quantum Mechanics}
\begin{refsection}
-\chapterauthor{Hans Muster}
-
-Ein paar Hinweise für die korrekte Formatierung des Textes
-\begin{itemize}
-\item
-Absätze werden gebildet, indem man eine Leerzeile einfügt.
-Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet.
-\item
-Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende
-Optionen werden gelöscht.
-Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen.
-\item
-Beginnen Sie jeden Satz auf einer neuen Zeile.
-Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen
-in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt
-anzuwenden.
-\item
-Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren
-Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern.
-\end{itemize}
-
-\input{papers/kugel/teil0.tex}
-\input{papers/kugel/teil1.tex}
-\input{papers/kugel/teil2.tex}
-\input{papers/kugel/teil3.tex}
+\chapterauthor{Manuel Cattaneo, Naoki Pross}
+
+\begin{verbatim}
+
+Ideas and current research goals
+--------------------------------
+
+- Recurrence relations for spherical harmonics
+- Associated Legendre polynomials
+- Rodrigues' type formula aka Rodrigues' formula
+- Applications:
+ * Quantization of angular momentum
+ * Gravitational field measurements (NASA ebb and flow, ESA goce)
+ * Literally anything that needs basis functions on the surface of a sphere
+
+Literature
+----------
+
+- Nichtkommutative Bildverarbeitung, T. Mendez, p57+
+- Linear Algebra Done Right, S. Axler, p212,221,231,237
+- Introduction to Quantum Mechanics, D. J. Griffith, p201+
+- Seminar Quantenmechanik, A. Müller, p101,106,114,121
+- Introduction to Partial Differential Equations, J. Oliver, p510+
+- Partial Differential Equations in Engineering Problems, K. Miller, p175,190
+
+\end{verbatim}
+
\printbibliography[heading=subbibliography]
\end{refsection}
diff --git a/buch/papers/kugel/teil0.tex b/buch/papers/kugel/teil0.tex
deleted file mode 100644
index f921a82..0000000
--- a/buch/papers/kugel/teil0.tex
+++ /dev/null
@@ -1,22 +0,0 @@
-%
-% einleitung.tex -- Beispiel-File für die Einleitung
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 0\label{kugel:section:teil0}}
-\rhead{Teil 0}
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua \cite{kugel:bibtex}.
-At vero eos et accusam et justo duo dolores et ea rebum.
-Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum
-dolor sit amet.
-
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua.
-At vero eos et accusam et justo duo dolores et ea rebum. Stet clita
-kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit
-amet.
-
-
diff --git a/buch/papers/kugel/teil1.tex b/buch/papers/kugel/teil1.tex
deleted file mode 100644
index e56bb18..0000000
--- a/buch/papers/kugel/teil1.tex
+++ /dev/null
@@ -1,55 +0,0 @@
-%
-% teil1.tex -- Beispiel-File für das Paper
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 1
-\label{kugel:section:teil1}}
-\rhead{Problemstellung}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo.
-Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit
-aut fugit, sed quia consequuntur magni dolores eos qui ratione
-voluptatem sequi nesciunt
-\begin{equation}
-\int_a^b x^2\, dx
-=
-\left[ \frac13 x^3 \right]_a^b
-=
-\frac{b^3-a^3}3.
-\label{kugel:equation1}
-\end{equation}
-Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet,
-consectetur, adipisci velit, sed quia non numquam eius modi tempora
-incidunt ut labore et dolore magnam aliquam quaerat voluptatem.
-
-Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis
-suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur?
-Quis autem vel eum iure reprehenderit qui in ea voluptate velit
-esse quam nihil molestiae consequatur, vel illum qui dolorem eum
-fugiat quo voluptas nulla pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{kugel:subsection:finibus}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}.
-
-Et harum quidem rerum facilis est et expedita distinctio
-\ref{kugel:section:loesung}.
-Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil
-impedit quo minus id quod maxime placeat facere possimus, omnis
-voluptas assumenda est, omnis dolor repellendus
-\ref{kugel:section:folgerung}.
-Temporibus autem quibusdam et aut officiis debitis aut rerum
-necessitatibus saepe eveniet ut et voluptates repudiandae sint et
-molestiae non recusandae.
-Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis
-voluptatibus maiores alias consequatur aut perferendis doloribus
-asperiores repellat.
-
-
diff --git a/buch/papers/kugel/teil2.tex b/buch/papers/kugel/teil2.tex
deleted file mode 100644
index cb9e427..0000000
--- a/buch/papers/kugel/teil2.tex
+++ /dev/null
@@ -1,40 +0,0 @@
-%
-% teil2.tex -- Beispiel-File für teil2
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 2
-\label{kugel:section:teil2}}
-\rhead{Teil 2}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{kugel:subsection:bonorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
-
-
diff --git a/buch/papers/kugel/teil3.tex b/buch/papers/kugel/teil3.tex
deleted file mode 100644
index 734fff9..0000000
--- a/buch/papers/kugel/teil3.tex
+++ /dev/null
@@ -1,40 +0,0 @@
-%
-% teil3.tex -- Beispiel-File für Teil 3
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 3
-\label{kugel:section:teil3}}
-\rhead{Teil 3}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{kugel:subsection:malorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
-
-
diff --git a/buch/papers/lambertw/Bilder/something.svg b/buch/papers/lambertw/Bilder/something.svg
new file mode 100644
index 0000000..e9d5656
--- /dev/null
+++ b/buch/papers/lambertw/Bilder/something.svg
@@ -0,0 +1 @@
+<svg xmlns:xlink="http://www.w3.org/1999/xlink" width="812" height="715" xmlns="http://www.w3.org/2000/svg" version="1.1"><defs><clipPath id="VERnTSIdNFBN"><path fill="none" stroke="none" d="M 0 0 L 812 0 L 812 715 L 0 715 L 0 0 Z" /></clipPath></defs><g clip-path="url(&quot;#VERnTSIdNFBN&quot;)" transform="scale(1)"><g><rect fill="rgb(255, 255, 255)" fill-opacity="1" stroke="none" x="0" y="0" width="812" height="715" /><path fill="none" stroke="rgb(192, 192, 192)" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-opacity="1" d="M 14.5 0.5 L 14.5 715.5 M 14.5 0.5 L 14.5 715.5 M 65.5 0.5 L 65.5 715.5 M 115.5 0.5 L 115.5 715.5 M 165.5 0.5 L 165.5 715.5 M 265.5 0.5 L 265.5 715.5 M 315.5 0.5 L 315.5 715.5 M 365.5 0.5 L 365.5 715.5 M 415.5 0.5 L 415.5 715.5 M 465.5 0.5 L 465.5 715.5 M 515.5 0.5 L 515.5 715.5 M 565.5 0.5 L 565.5 715.5 M 615.5 0.5 L 615.5 715.5 M 665.5 0.5 L 665.5 715.5 M 715.5 0.5 L 715.5 715.5 M 765.5 0.5 L 765.5 715.5" paint-order="fill stroke markers" /><path fill="none" stroke="rgb(192, 192, 192)" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-opacity="0.235294" d="M 4.5 0.5 L 4.5 715.5 M 24.5 0.5 L 24.5 715.5 M 35.5 0.5 L 35.5 715.5 M 45.5 0.5 L 45.5 715.5 M 55.5 0.5 L 55.5 715.5 M 75.5 0.5 L 75.5 715.5 M 85.5 0.5 L 85.5 715.5 M 95.5 0.5 L 95.5 715.5 M 105.5 0.5 L 105.5 715.5 M 125.5 0.5 L 125.5 715.5 M 135.5 0.5 L 135.5 715.5 M 145.5 0.5 L 145.5 715.5 M 155.5 0.5 L 155.5 715.5 M 175.5 0.5 L 175.5 715.5 M 185.5 0.5 L 185.5 715.5 M 195.5 0.5 L 195.5 715.5 M 205.5 0.5 L 205.5 715.5 M 225.5 0.5 L 225.5 715.5 M 235.5 0.5 L 235.5 715.5 M 245.5 0.5 L 245.5 715.5 M 255.5 0.5 L 255.5 715.5 M 275.5 0.5 L 275.5 715.5 M 285.5 0.5 L 285.5 715.5 M 295.5 0.5 L 295.5 715.5 M 305.5 0.5 L 305.5 715.5 M 325.5 0.5 L 325.5 715.5 M 335.5 0.5 L 335.5 715.5 M 345.5 0.5 L 345.5 715.5 M 355.5 0.5 L 355.5 715.5 M 375.5 0.5 L 375.5 715.5 M 385.5 0.5 L 385.5 715.5 M 395.5 0.5 L 395.5 715.5 M 405.5 0.5 L 405.5 715.5 M 425.5 0.5 L 425.5 715.5 M 435.5 0.5 L 435.5 715.5 M 445.5 0.5 L 445.5 715.5 M 455.5 0.5 L 455.5 715.5 M 475.5 0.5 L 475.5 715.5 M 485.5 0.5 L 485.5 715.5 M 495.5 0.5 L 495.5 715.5 M 505.5 0.5 L 505.5 715.5 M 525.5 0.5 L 525.5 715.5 M 535.5 0.5 L 535.5 715.5 M 545.5 0.5 L 545.5 715.5 M 555.5 0.5 L 555.5 715.5 M 575.5 0.5 L 575.5 715.5 M 585.5 0.5 L 585.5 715.5 M 595.5 0.5 L 595.5 715.5 M 605.5 0.5 L 605.5 715.5 M 625.5 0.5 L 625.5 715.5 M 635.5 0.5 L 635.5 715.5 M 645.5 0.5 L 645.5 715.5 M 655.5 0.5 L 655.5 715.5 M 675.5 0.5 L 675.5 715.5 M 685.5 0.5 L 685.5 715.5 M 695.5 0.5 L 695.5 715.5 M 705.5 0.5 L 705.5 715.5 M 725.5 0.5 L 725.5 715.5 M 735.5 0.5 L 735.5 715.5 M 745.5 0.5 L 745.5 715.5 M 755.5 0.5 L 755.5 715.5 M 775.5 0.5 L 775.5 715.5 M 785.5 0.5 L 785.5 715.5 M 795.5 0.5 L 795.5 715.5 M 805.5 0.5 L 805.5 715.5" paint-order="fill stroke markers" /><path fill="none" stroke="rgb(192, 192, 192)" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-opacity="1" d="M 0.5 12.5 L 812.5 12.5 M 0.5 12.5 L 812.5 12.5 M 0.5 62.5 L 812.5 62.5 M 0.5 112.5 L 812.5 112.5 M 0.5 162.5 L 812.5 162.5 M 0.5 212.5 L 812.5 212.5 M 0.5 262.5 L 812.5 262.5 M 0.5 312.5 L 812.5 312.5 M 0.5 362.5 L 812.5 362.5 M 0.5 462.5 L 812.5 462.5 M 0.5 512.5 L 812.5 512.5 M 0.5 562.5 L 812.5 562.5 M 0.5 612.5 L 812.5 612.5 M 0.5 662.5 L 812.5 662.5 M 0.5 712.5 L 812.5 712.5" paint-order="fill stroke markers" /><path fill="none" stroke="rgb(192, 192, 192)" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-opacity="0.235294" d="M 0.5 2.5 L 812.5 2.5 M 0.5 2.5 L 812.5 2.5 M 0.5 22.5 L 812.5 22.5 M 0.5 32.5 L 812.5 32.5 M 0.5 42.5 L 812.5 42.5 M 0.5 52.5 L 812.5 52.5 M 0.5 72.5 L 812.5 72.5 M 0.5 82.5 L 812.5 82.5 M 0.5 92.5 L 812.5 92.5 M 0.5 102.5 L 812.5 102.5 M 0.5 122.5 L 812.5 122.5 M 0.5 132.5 L 812.5 132.5 M 0.5 142.5 L 812.5 142.5 M 0.5 152.5 L 812.5 152.5 M 0.5 172.5 L 812.5 172.5 M 0.5 182.5 L 812.5 182.5 M 0.5 192.5 L 812.5 192.5 M 0.5 202.5 L 812.5 202.5 M 0.5 222.5 L 812.5 222.5 M 0.5 232.5 L 812.5 232.5 M 0.5 242.5 L 812.5 242.5 M 0.5 252.5 L 812.5 252.5 M 0.5 272.5 L 812.5 272.5 M 0.5 282.5 L 812.5 282.5 M 0.5 292.5 L 812.5 292.5 M 0.5 302.5 L 812.5 302.5 M 0.5 322.5 L 812.5 322.5 M 0.5 332.5 L 812.5 332.5 M 0.5 342.5 L 812.5 342.5 M 0.5 352.5 L 812.5 352.5 M 0.5 372.5 L 812.5 372.5 M 0.5 382.5 L 812.5 382.5 M 0.5 392.5 L 812.5 392.5 M 0.5 402.5 L 812.5 402.5 M 0.5 422.5 L 812.5 422.5 M 0.5 432.5 L 812.5 432.5 M 0.5 442.5 L 812.5 442.5 M 0.5 452.5 L 812.5 452.5 M 0.5 472.5 L 812.5 472.5 M 0.5 482.5 L 812.5 482.5 M 0.5 492.5 L 812.5 492.5 M 0.5 502.5 L 812.5 502.5 M 0.5 522.5 L 812.5 522.5 M 0.5 532.5 L 812.5 532.5 M 0.5 542.5 L 812.5 542.5 M 0.5 552.5 L 812.5 552.5 M 0.5 572.5 L 812.5 572.5 M 0.5 582.5 L 812.5 582.5 M 0.5 592.5 L 812.5 592.5 M 0.5 602.5 L 812.5 602.5 M 0.5 622.5 L 812.5 622.5 M 0.5 632.5 L 812.5 632.5 M 0.5 642.5 L 812.5 642.5 M 0.5 652.5 L 812.5 652.5 M 0.5 672.5 L 812.5 672.5 M 0.5 682.5 L 812.5 682.5 M 0.5 692.5 L 812.5 692.5 M 0.5 702.5 L 812.5 702.5" paint-order="fill stroke markers" /><path fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" stroke-opacity="1" d="M 215.5 2.5 L 215.5 715.5" paint-order="fill stroke markers" /><path fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" stroke-opacity="1" d="M 215.5 1.5 L 211.5 5.5" paint-order="fill stroke markers" /><path fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" stroke-opacity="1" d="M 215.5 1.5 L 219.5 5.5" paint-order="fill stroke markers" /><path fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" stroke-opacity="1" d="M 0.5 412.5 L 810.5 412.5" paint-order="fill stroke markers" /><path fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" stroke-opacity="1" d="M 811.5 412.5 L 807.5 408.5" paint-order="fill stroke markers" /><path fill="none" stroke="rgb(0, 0, 0)" stroke-miterlimit="10" stroke-opacity="1" d="M 811.5 412.5 L 807.5 416.5" paint-order="fill stroke markers" /><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="10" y="428">–4</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="10" y="428">–4</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="10" y="428">–4</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="60" y="428">–3</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="60" y="428">–3</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="60" y="428">–3</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="110" y="428">–2</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="110" y="428">–2</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="110" y="428">–2</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="160" y="428">–1</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="160" y="428">–1</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="160" y="428">–1</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="263" y="428">1</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="263" y="428">1</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="263" y="428">1</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="313" y="428">2</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="313" y="428">2</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="313" y="428">2</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="363" y="428">3</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="363" y="428">3</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="363" y="428">3</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="413" y="428">4</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="413" y="428">4</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="413" y="428">4</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="463" y="428">5</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="463" y="428">5</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="463" y="428">5</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="513" y="428">6</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="513" y="428">6</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="513" y="428">6</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="563" y="428">7</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="563" y="428">7</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="563" y="428">7</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="613" y="428">8</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="613" y="428">8</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="613" y="428">8</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="663" y="428">9</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="663" y="428">9</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="663" y="428">9</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="710" y="428">10</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="710" y="428">10</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="710" y="428">10</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="760" y="428">11</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="760" y="428">11</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="760" y="428">11</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="195" y="667">–5</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="195" y="667">–5</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="195" y="667">–5</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="195" y="617">–4</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="195" y="617">–4</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="195" y="617">–4</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="195" y="567">–3</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="195" y="567">–3</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="195" y="567">–3</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="195" y="517">–2</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="195" y="517">–2</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="195" y="517">–2</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="195" y="467">–1</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="195" y="467">–1</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="195" y="467">–1</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="367">1</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="201" y="367">1</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="367">1</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="317">2</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="201" y="317">2</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="317">2</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="267">3</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="201" y="267">3</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="267">3</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="217">4</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="201" y="217">4</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="217">4</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="167">5</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="201" y="167">5</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="167">5</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="117">6</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="201" y="117">6</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="117">6</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="67">7</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="201" y="67">7</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="67">7</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="17">8</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="201" y="17">8</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="17">8</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="428">0</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="201" y="428">0</text><text font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="201" y="428">0</text><path fill="none" stroke="rgb(0, 0, 0)" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-opacity="0.698039" stroke-width="2.5" d="M 215 412 L 269.515 252.091" paint-order="fill stroke markers" /><path fill="rgb(0, 0, 0)" fill-opacity="0.698039" fill-rule="evenodd" stroke="none" d="M 275 236 L 273.537 253.462 L 265.492 250.719 Z" paint-order="stroke fill markers" /><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="256" y="320">OA</text><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="256" y="320">OA</text><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="256" y="320">OA</text><path fill="none" stroke="rgb(0, 0, 0)" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-opacity="0.698039" stroke-width="2.5" d="M 215 412 L 449.433 198.448" paint-order="fill stroke markers" /><path fill="rgb(0, 0, 0)" fill-opacity="0.698039" fill-rule="evenodd" stroke="none" d="M 462 187 L 452.295 201.59 L 446.571 195.306 Z" paint-order="stroke fill markers" /><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="359" y="307">OP</text><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="359" y="307">OP</text><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="359" y="307">OP</text><path fill="none" stroke="rgb(0, 0, 0)" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-opacity="0.698039" stroke-width="2.5" d="M 462 187 L 291.445 231.691" paint-order="fill stroke markers" /><path fill="rgb(0, 0, 0)" fill-opacity="0.698039" fill-rule="evenodd" stroke="none" d="M 275 236 L 290.368 227.58 L 292.522 235.802 Z" paint-order="stroke fill markers" /><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="351" y="203">PA</text><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="351" y="203">PA</text><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(0, 0, 0)" fill-opacity="1" stroke="none" text-anchor="start" x="351" y="203">PA</text><path fill="rgb(77, 77, 255)" fill-opacity="1" stroke="none" d="M 467 187 C 467 189.761 464.761 192 462 192 C 459.239 192 457 189.761 457 187 C 457 184.239 459.239 182 462 182 C 464.761 182 467 184.239 467 187 Z" paint-order="stroke fill markers" /><path fill="none" stroke="rgb(0, 0, 0)" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-opacity="1" d="M 467 187 C 467 189.761 464.761 192 462 192 C 459.239 192 457 189.761 457 187 C 457 184.239 459.239 182 462 182 C 464.761 182 467 184.239 467 187 Z" paint-order="fill stroke markers" /><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(77, 77, 255)" fill-opacity="1" stroke="none" text-anchor="start" x="466" y="177">P</text><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="466" y="177">P</text><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(77, 77, 255)" fill-opacity="1" stroke="none" text-anchor="start" x="466" y="177">P</text><path fill="rgb(77, 77, 255)" fill-opacity="1" stroke="none" d="M 280 236 C 280 238.761 277.761 241 275 241 C 272.239 241 270 238.761 270 236 C 270 233.239 272.239 231 275 231 C 277.761 231 280 233.239 280 236 Z" paint-order="stroke fill markers" /><path fill="none" stroke="rgb(0, 0, 0)" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-opacity="1" d="M 280 236 C 280 238.761 277.761 241 275 241 C 272.239 241 270 238.761 270 236 C 270 233.239 272.239 231 275 231 C 277.761 231 280 233.239 280 236 Z" paint-order="fill stroke markers" /><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(77, 77, 255)" fill-opacity="1" stroke="none" text-anchor="start" x="279" y="226">A</text><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="none" stroke="rgb(255, 255, 255)" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-opacity="1" stroke-width="3" text-anchor="start" x="279" y="226">A</text><text font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" dominant-baseline="alphabetic" fill="rgb(77, 77, 255)" fill-opacity="1" stroke="none" text-anchor="start" x="279" y="226">A</text></g></g></svg> \ No newline at end of file
diff --git a/buch/papers/lambertw/packages.tex b/buch/papers/lambertw/packages.tex
index 6581a5a..366de78 100644
--- a/buch/papers/lambertw/packages.tex
+++ b/buch/papers/lambertw/packages.tex
@@ -8,3 +8,5 @@
% following example
%\usepackage{packagename}
+\usepackage{graphicx}
+\usepackage{float} \ No newline at end of file
diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex
index 2b83d59..ca172e5 100644
--- a/buch/papers/lambertw/teil0.tex
+++ b/buch/papers/lambertw/teil0.tex
@@ -3,20 +3,15 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\section{Teil 0\label{lambertw:section:teil0}}
+\section{Was sind Verfolgungskurven? \label{lambertw:section:teil0}}
\rhead{Teil 0}
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua \cite{lambertw:bibtex}.
-At vero eos et accusam et justo duo dolores et ea rebum.
-Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum
-dolor sit amet.
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua.
-At vero eos et accusam et justo duo dolores et ea rebum. Stet clita
-kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit
-amet.
+
+Verfolgungskurven entstehen immer, dann wenn ein Verfolger sein Ziel verfolgt.
+Nämlich ist eine Verfolgungskurve die Kurve, die ein Verfolger abfährt während er sein Ziel verfolgt.
+
+Zum Beispiel
+
+
diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex
index 7b545c3..493ec05 100644
--- a/buch/papers/lambertw/teil1.tex
+++ b/buch/papers/lambertw/teil1.tex
@@ -3,9 +3,116 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\section{Teil 1
+\section{Beispiel ()
\label{lambertw:section:teil1}}
\rhead{Problemstellung}
+
+
+
+%\begin{figure}[H]
+% \centering
+% \includegraphics[width=0.5\textwidth]{.\Bilder\something.pdf}
+% \label{pursuer:grafik1}
+%\end{figure}
+
+
+
+Je nach Verfolgungsstrategie die der Verfolger verwendet, entsteht eine andere DGL.
+Für dieses konkrete Beispiel wird einfachheitshalber die simpelste Strategie gewählt.
+Bei dieser Strategie bewegt sich der Verfolger immer direkt auf sein Ziel hinzu.
+Womit der Geschwindigkeitsvektor des Verfolgers zu jeder Zeit direkt auf das Ziel zeigt.
+
+Um die DGL dieses Problems herzuleiten wird der Sachverhalt in der Grafik \eqref{pursuer:grafik1} aufgezeigt.
+Der Punkt $P$ ist der Verfolger und der Punkt $A$ ist sein Ziel.
+
+Um dies mathematisch beschreiben zu können, wird der Richtungsvektor
+\begin{equation}
+ \frac{A-P}{|A-P|}
+ =
+ \frac{\dot{P}}{|\dot{P}|}
+\end{equation}
+benötigt. Durch die Subtraktion der Ortsvektoren $\overrightarrow{OP}$ und $\overrightarrow{OA}$ entsteht ein Vektor der vom Punkt $P$ auf $A$ zeigt.
+Da die Länge dieses Vektors beliebig sein kann, wird durch Division mit dem Betrag, die Länge auf eins festgelegt.
+Aus dem Verfolgungsproblem ist auch ersichtlich, dass die Punkte $A$ und $P$ nicht am gleichen Ort starten und so eine Division durch Null ausgeschlossen ist.
+Wenn die Punkte $A$ und $P$ trotzdem am gleichen Ort starten, ist die Lösung trivial.
+
+Nun wird die Gleichung mit deren rechten Seite skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren.
+\begin{equation}
+ \label{pursuer:pursuerDGL}
+ \frac{A-P}{|A-P|}\cdot \frac{\dot{P}}{|\dot{P}|}
+ =
+ 1
+\end{equation}
+Diese DGL ist der Kern des Verfolgungsproblems, insofern sich der Verfolger immer direkt auf sein Ziel zubewegt.
+
+
+\subsection{Beispiel}
+Das Verfolgungsproblem wird mithilfe eines konkreten Beispiels veranschaulicht. Dafür wird die einfachste Strategie verwendet, bei der sich der Verfolger direkt auf sein Ziel hinzu bewegt. Für dieses Problem wurde bereits die DGL \eqref{pursuer:pursuerDGL} hergeleitet.
+
+Um dieses Beispiel einfach zu halten, wird für den Verfolger und das Ziel jeweils eine konstante Geschwindigkeit von eins gewählt. Das Ziel wiederum startet im Ursprung und bewegt sich linear auf der positiven Y-Achse.
+
+\begin{align}
+ v_P^2
+ &=
+ \dot{P}\cdot\dot{P}
+ =
+ 1
+ \\[5pt]
+ v_A
+ &=
+ 1
+ \\[5pt]
+ A
+ &=
+ \begin{pmatrix}
+ 0 \\
+ v_A\cdot t
+ \end{pmatrix}
+ =
+ \begin{pmatrix}
+ 0 \\
+ t
+ \end{pmatrix}
+ \\[5pt]
+ P
+ &=
+ \begin{pmatrix}
+ x \\
+ y
+ \end{pmatrix}
+\end{align}
+
+Die Anfangsbedingungen dieses Problems sind.
+
+\begin{align}
+ y(t)\bigg|_{t=0}
+ &=
+ y_0
+ \\[5pt]
+ x(t)\bigg|_{t=0}
+ &=
+ x_0 \\[5pt]
+ \frac{\,dy}{\,dx}(t)\bigg|_{t=0}
+ &=
+ \frac{y_A(t) -y_P(t)}{x_A(t)-x_P(t)}\bigg|_{t=0}
+\end{align}
+
+Mit den vorangegangenen Definitionen kann nun die DGL \eqref{pursuer:pursuerDGL} gelöst werden.
+Dafür wird als erstes das Skalarprodukt ausgerechnet.
+
+\begin{equation}
+ \dfrac{-x\cdot\dot{x}+(t-y)\cdot\dot{y}}{\sqrt{x^2+(t-y)^2}} = 1
+\end{equation}
+
+
+
+
+
+
+
+
+
+
Sed ut perspiciatis unde omnis iste natus error sit voluptatem
accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
quae ab illo inventore veritatis et quasi architecto beatae vitae
diff --git a/buch/papers/transfer/main.tex b/buch/papers/transfer/main.tex
index 2aae635..ed16998 100644
--- a/buch/papers/transfer/main.tex
+++ b/buch/papers/transfer/main.tex
@@ -3,29 +3,10 @@
%
% (c) 2020 Hochschule Rapperswil
%
-\chapter{Thema\label{chapter:transfer}}
+\chapter{Transferfunktionen\label{chapter:transfer}}
\lhead{Thema}
\begin{refsection}
-\chapterauthor{Hans Muster}
-
-Ein paar Hinweise für die korrekte Formatierung des Textes
-\begin{itemize}
-\item
-Absätze werden gebildet, indem man eine Leerzeile einfügt.
-Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet.
-\item
-Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende
-Optionen werden gelöscht.
-Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen.
-\item
-Beginnen Sie jeden Satz auf einer neuen Zeile.
-Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen
-in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt
-anzuwenden.
-\item
-Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren
-Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern.
-\end{itemize}
+\chapterauthor{Marc Benz}
\input{papers/transfer/teil0.tex}
\input{papers/transfer/teil1.tex}
diff --git a/vorlesungsnotizen/B/5 - Orthogonale Polynome.pdf b/vorlesungsnotizen/B/5 - Orthogonale Polynome.pdf
new file mode 100644
index 0000000..8e9ab51
--- /dev/null
+++ b/vorlesungsnotizen/B/5 - Orthogonale Polynome.pdf
Binary files differ
diff --git a/vorlesungsnotizen/B/6 - Elliptische Funktionen.pdf b/vorlesungsnotizen/B/6 - Elliptische Funktionen.pdf
new file mode 100644
index 0000000..1b0b73a
--- /dev/null
+++ b/vorlesungsnotizen/B/6 - Elliptische Funktionen.pdf
Binary files differ
diff --git a/vorlesungsnotizen/B/7 - Komplexe Funktionen.pdf b/vorlesungsnotizen/B/7 - Komplexe Funktionen.pdf
new file mode 100644
index 0000000..179aa5c
--- /dev/null
+++ b/vorlesungsnotizen/B/7 - Komplexe Funktionen.pdf
Binary files differ
diff --git a/vorlesungsnotizen/MSE/3 - Differentialgleichungen.pdf b/vorlesungsnotizen/MSE/3 - Differentialgleichungen.pdf
new file mode 100644
index 0000000..9ce44bb
--- /dev/null
+++ b/vorlesungsnotizen/MSE/3 - Differentialgleichungen.pdf
Binary files differ