diff options
-rw-r--r-- | buch/chapters/060-integral/differentialkoerper.tex | 142 |
1 files changed, 142 insertions, 0 deletions
diff --git a/buch/chapters/060-integral/differentialkoerper.tex b/buch/chapters/060-integral/differentialkoerper.tex index 76233a6..ef61b2b 100644 --- a/buch/chapters/060-integral/differentialkoerper.tex +++ b/buch/chapters/060-integral/differentialkoerper.tex @@ -157,4 +157,146 @@ Im nächsten Abschnitt dann soll der Risch-Algorithmus skizziert werden. \subsection{Die Fehlerfunktion ist keine elementare Funktion \label{buch:integrale:section:fehlernichtelementar}} +% \url{https://youtu.be/bIdPQTVF5n4} +Mit Hilfe des Satzes von Liouville kann man jetzt beweisen, dass +die Fehlerfunktion keine elementare Funktion ist. +Dazu braucht man die folgende spezielle Form des Satzes. + +\begin{satz} +\label{buch:integrale:satz:elementarestammfunktion} +Wenn $f(x)$ und $g(x)$ rationale Funktionen von $x$ sind, dann +ist die Stammfunktion von $f(x)e^{g(x)}$ genau dann eine +elementare Funktion, wenn es eine rationale Funktion gibt, die +Lsung der Differentialgleichung +\[ +r'(x) + g'(x)r(x)=f(x) +\] +ist. +\end{satz} + +\begin{satz} +Die Funktion $x\mapsto e^{-x^2}$ hat keine elementare Stammfunktion. +\label{buch:iintegrale:satz:expx2} +\end{satz} + +\begin{proof}[Beweis] +Unter Anwendung des Satzes~\ref{buch:integrale:satz:elementarestammfunktion} +auf $f(x)=1$ und $g(x)=-x^2$ folgt, $e^{-x^2}$ genau dann eine rationale +Stammfunktion hat, wenn es eine rationale Funktion $r(x)$ gibt, die +Lösung der Differentialgleichung +\begin{equation} +r'(x) -2xr(x)=1 +\label{buch:integrale:expx2dgl} +\end{equation} +ist. + +Zunächst halten wir fest, dass $r(x)$ kein Polynom sein kann. +Wäre nämlich +\[ +r(x) += +a_0 + a_1x + \dots + a_nx^n += +\sum_{k=0}^n a_kx^k +\quad\Rightarrow\quad +r'(x) += +a_1 + 2a_2x + \dots + na_nx^{n-1} += +\sum_{k=1}^n +ka_kx^{k-1} +\] +ein Polynom, dann ergäbe sich beim Einsetzen in die Differentialgleichung +\begin{align*} +1 +&= +r'(x)-2xr(x) +\\ +&= +a_1 + 2a_2x + 3a_3x^2 + \dots + (n-1)a_{n-1}x^{n-2} + na_nx^{n-1} +\\ +&\qquad +- +2a_0x -2a_1x^2 -2a_2x^3 - \dots - 2a_{n-1}x^n - 2a_nx^{n+1} +\\ +& +\hspace{0.7pt} +\renewcommand{\arraycolsep}{1.8pt} +\begin{array}{crcrcrcrcrcrcrcr} +=&a_1&+&2a_2x&+&3a_3x^2&+&\dots&+&(n-1)a_{n-1}x^{n-2}&+&na_{n }x^{n-1}& & & & \\ + & &-&2a_0x&-&2a_1x^2&-&\dots&-& 2a_{n-3}x^{n-2}&-&2a_{n-2}x^{n-1}&-&2a_{n-1}x^n&-&2a_nx^{n+1} +\end{array} +\\ +&= +a_1 ++ +(2a_2-2a_0)x ++ +(3a_3-2a_1)x^2 +%+ +%(4a_4-2a_2)x^3 ++ +\dots ++ +(na_n-2a_{n-2})x^{n-1} +- +2a_{n-1}x^n +- +2a_nx^{n+1}. +\end{align*} +Koeffizientenvergleich zeigt, dass $a_1=1$ sein muss. +Aus den letzten zwei Termen liest man ebenfalls mittels Koeffizientenvergleich +ab, dass $a_n=0$ und $a_{n-1}=0$ sein müssen. +Aus den Koeffizienten $(ka_k-2a_{k-2})=0$ folgt, dass +$a_{k-2}=\frac{k}{2}a_k$ für alle $k>1$ sein muss, diese Koeffizienten +verschwinden also auch, inklusive $a_1=0$. +Dies ist allerdings im Widerspruch zu $a_1=1$. +Es folgt, dass $r(x)$ kein Polynom sein kann. + +Der Nenner der rationalen Funktion $r(x)$ hat also mindestens eine Nullstelle +$\alpha$, man kann daher $r(x)$ auch schreiben als +\[ +r(x) = \frac{s(x)}{(x-\alpha)^n}, +\] +wobei die rationale Funktion $s(x)$ keine Nullstellen und keine Pole hat. +Einsetzen in die Differentialgleichung ergibt: +\[ +1 += +r'(x) -2xr(x) += +\frac{s'(x)}{(x-\alpha)^n} +-n +\frac{s(x)}{(x-\alpha)^{n+1}} +- +\frac{2xs(x)}{(x-\alpha)^n}. +\] +Multiplizieren mit $(x-\alpha)^{n+1}$ gibt +\[ +(x-\alpha)^{n+1} += +s'(x)(x-\alpha) +- +ns(x) +- +2xs(x)(x-\alpha) +\] +Setzt man $x=\alpha$ ein, verschwinden alle Terme ausser dem mittleren +auf der rechten Seite, es bleibt +\[ +ns(\alpha) = 0. +\] +Dies widerspricht aber der Wahl der rationalen Funktion $s(x)$, für die +$\alpha$ keine Nullstelle ist. + +Somit kann es keine rationale Funktion $r(x)$ geben, die eine Lösung der +Differentialgleichung~\eqref{buch:integrale:expx2dgl} ist und +die Funktion $e^{-x^2}$ hat keine elementare Stammfunktion. +\end{proof} + +Der Satz~\ref{buch:iintegrale:satz:expx2} rechtfertigt die Einführung +der Fehlerfunktion $\operatorname{erf}(x)$ als neue spezielle Funktion, +mit deren Hilfe die Funktion $e^{-x^2}$ integriert werden kann. + + |