aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--buch/chapters/040-rekursion/Makefile.inc2
-rw-r--r--buch/chapters/040-rekursion/bohrmollerup.tex196
-rw-r--r--buch/chapters/040-rekursion/gamma.tex2
-rw-r--r--buch/chapters/040-rekursion/integral.tex103
4 files changed, 303 insertions, 0 deletions
diff --git a/buch/chapters/040-rekursion/Makefile.inc b/buch/chapters/040-rekursion/Makefile.inc
index c5887f7..ed8fd51 100644
--- a/buch/chapters/040-rekursion/Makefile.inc
+++ b/buch/chapters/040-rekursion/Makefile.inc
@@ -6,6 +6,8 @@
CHAPTERFILES = $(CHAPTERFILES) \
chapters/040-rekursion/gamma.tex \
+ chapters/040-rekursion/bohrmollerup.tex \
+ chapters/040-rekursion/integral.tex \
chapters/040-rekursion/beta.tex \
chapters/040-rekursion/linear.tex \
chapters/040-rekursion/hypergeometrisch.tex \
diff --git a/buch/chapters/040-rekursion/bohrmollerup.tex b/buch/chapters/040-rekursion/bohrmollerup.tex
new file mode 100644
index 0000000..96897be
--- /dev/null
+++ b/buch/chapters/040-rekursion/bohrmollerup.tex
@@ -0,0 +1,196 @@
+%
+% bohrmollerup.tex
+%
+% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\subsection{Der Satz von Bohr-Mollerup
+\label{buch:rekursion:subsection:bohr-mollerup}}
+Die Integralformel und die Grenzwertdefinition für die Gamma-Funktion
+zeigen beide, dass das Problem der Ausdehnung der Fakultät zu einer
+Funktion $\mathbb{C}\to\mathbb{C}$ eine Lösung hat, aber es ist noch
+nicht klar, in welchem Sinn dies die einzig mögliche Lösung ist.
+Der Satz von Bohr-Mollerup gibt darauf eine Antwort.
+
+\begin{satz}
+\label{buch:satz:bohr-mollerup}
+Eine Funktion $f\colon \mathbb{R}^+\to\mathbb{R}$ mit den Eigenschaften
+\begin{enumerate}[i)]
+\item $f(1)=1$,
+\item $f(x+1)=xf(x)$ für alle $x\in\mathbb{R}^+$ und
+\item die Funktion $\log f(t)$ ist konvex
+\end{enumerate}
+ist die Gamma-Funktion: $f(t)=\Gamma(t)$.
+\end{satz}
+
+Für den Beweis verwenden wir die folgende Eigenschaft einer konvexen
+Funktion $g(x)$.
+Sei
+\begin{equation}
+S(y,x) = \frac{g(y)-g(x)}{y-x}
+\qquad\text{für $y-x$}
+\end{equation}
+die Steigung der Sekante zwischen den Punkten $(x,g(x))$ und $(y,g(y))$
+des Graphen von $g$.
+Da $g$ konvex ist, ist $S(y,x)$ eine monoton wachsende Funktion
+der beiden Variablen $x$ und $y$, solange $y>x$.
+
+\begin{proof}[Beweis]
+Wir halten zunächst fest, dass die Bedingungen i) und ii) zur Folge haben,
+dass $f(n+1)=n!$ ist für alle positiven natürlichen Zahlen.
+Für die Steigung einer Sekante der Funktion $g(x)=\log f(x)$ kann damit
+für natürliche Argumente bereits berechnet werden, es ist
+\[
+S(n,n+1)
+=
+\frac{\log n! - \log (n-1)!}{n+1-n}
+=
+\frac{\log n + \log (n-1)! - \log(n-1)!}{1}
+=
+\log n
+\]
+und entsprechend auch $S(n-1,n) = \log(n-1)$.
+
+\begin{figure}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\draw (-6,0) -- (6,0);
+
+\node at (-5,0) [above] {$n-1\mathstrut$};
+\node at (0,0) [above] {$n\mathstrut$};
+\node at (3,0) [above] {$n+x\mathstrut$};
+\node at (5,0) [above] {$n+1\mathstrut$};
+
+\node[color=blue] at (-5,-2.3) {$S(n-1,n)\mathstrut$};
+\node[color=red] at (-1.666,-2.3) {$S(n-1,n+x)\mathstrut$};
+\node[color=darkgreen] at (1.666,-2.3) {$S(n,n+x)\mathstrut$};
+\node[color=orange] at (5,-2.3) {$S(n,n+1)\mathstrut$};
+
+\node at (-3.333,-2.3) {$<\mathstrut$};
+\node at (0,-2.3) {$<\mathstrut$};
+\node at (3.333,-2.3) {$<\mathstrut$};
+
+\draw[color=blue] (-5,0) -- (-5,-2) -- (0,0);
+\draw[color=red] (-5,0) -- (-1.666,-2) -- (3,0);
+\draw[color=darkgreen] (0,0) -- (1.666,-2) -- (3,0);
+\draw[color=orange] (0,0) -- (5,-2) -- (5,0);
+
+\fill (-5,0) circle[radius=0.08];
+\fill (0,0) circle[radius=0.08];
+\fill (3,0) circle[radius=0.08];
+\fill (5,0) circle[radius=0.08];
+
+\draw[double,color=blue] (-5,-2.5) -- (-5,-3.0);
+\draw[double,color=orange] (5,-2.5) -- (5,-3.0);
+
+\node[color=blue] at (-5,-3.3) {$\log (n-1)\mathstrut$};
+\node[color=orange] at (5,-3.3) {$\log (n)\mathstrut$};
+
+\end{tikzpicture}
+\end{center}
+\caption{Für den Beweis des Satzes von Bohr-Mollerup wird die
+Sekantensteigung $S(x,y)$ für die Argumente $n-1$, $n$, $n+x$ und $n+1$
+verwendet.
+\label{buch:rekursion:fig:bohr-mollerup}}
+\end{figure}
+Wir wenden jetzt die eben erwähnte Tatsache, dass $S(x,y)$ monoton
+wachsend ist, auf die Punkte $n-1$, $n$, $n+x$ und $n+1$ wie
+in Abbildung~\ref{buch:rekursion:fig:bohr-mollerup} an, wobei
+$0<x<1$ ist.
+
+Die linke Ungleichung in Abbildung~\ref{buch:rekursion:fig:bohr-mollerup}
+ist
+\begin{align}
+\log(n-1)
+&<
+S(n-1,n+x)
+=
+\frac{\log f(n+x) -\log(n-2)!}{n+x-n+1}
+\notag
+\\
+(x+1)\log(n-1) + \log(n-2)!
+&< \log f(n+x),
+\notag
+\\
+x\log(n-1) + \log(n-1)!
+&< \log f(n+x)
+\label{buch:rekursion:bohr-mollerup:eqn1}
+\intertext{sie schätzt $\log f(n+x)$ nach unten ab.
+Die Exponentialfunktion ist monoton wachsen, wendet man sie auf
+\eqref{buch:rekursion:bohr-mollerup:eqn1} an, erhält man}
+(n-1)^x (n-1)!
+&<
+f(n+x).
+\label{buch:rekursion:bohr-mollerup:ungllinks}
+\end{align}
+Ganz ähnlich folgt aus der Ungleichung rechts in
+Abbildung~\ref{buch:rekursion:fig:bohr-mollerup}
+\begin{align}
+\frac{\log f(n+x)-\log (n-1)!}{n+x-n}
+&< \log n
+\notag
+\\
+\log f(n+x) - \log(n-1)!
+&<
+x \log n
+\notag
+\\
+\log f(n+x)
+&<
+x\log n + \log(n-1)!
+\notag
+\intertext{und nach Anwendung der Exponentialfunktion}
+f(n+x)
+&<
+n^x (n-1)!
+\label{buch:rekursion:bohr-mollerup:unglrechts}
+\end{align}
+Die Funktion $f(n+x)$ können wir jetzt mit der Funktionalgleichung ii)
+durch $f(x)$ ausdrücken:
+\begin{align*}
+f(n+x)
+&=
+(x+n-1)f(n+x-1)
+\\
+&=
+(x+n-1)(x+n-2)f(n+x-2)
+\\
+&\vdots
+\\
+&=
+(x+n-1)(x+n-2)\dots x\,f(x)
+=
+(x)_n f(x).
+\end{align*}
+Zusammen mit den Ungleichungen
+\eqref{buch:rekursion:bohr-mollerup:ungllinks}
+und
+\eqref{buch:rekursion:bohr-mollerup:unglrechts}
+erhalten wir
+\begin{align*}
+(n-1)^x (n-1)!
+&<
+(x)_n f(x)
+<
+n^x (n-1)!
+\\
+%\underbrace{
+\frac{(n-1)^x (n-1)!}{(x)_n}
+%}_{\displaystyle\to \Gamma(x)}
+&< f(x)
+<
+\frac{n^x (n-1)!}{(x)_n}
+=
+%\underbrace{
+\frac{n^x n!}{(x)_{n+1}}
+%}_{\displaystyle\to \Gamma(x)}
+\cdot
+%\underbrace{
+\frac{x+n}{n}
+%}_{\displaystyle\to 1}
+.
+\end{align*}
+Der Ausdruck ganz links und der erste Bruch rechts konvergieren
+für $n\to\infty$ beide gegen $\Gamma(x)$ und der Bruch ganz rechts
+konvergiert gegen $1$.
+Daher muss auch $f(x)=\Gamma(x)$ sein.
+\end{proof}
diff --git a/buch/chapters/040-rekursion/gamma.tex b/buch/chapters/040-rekursion/gamma.tex
index 737cf7f..af5d572 100644
--- a/buch/chapters/040-rekursion/gamma.tex
+++ b/buch/chapters/040-rekursion/gamma.tex
@@ -714,4 +714,6 @@ Die Genauigkeit erreicht sechs korrekte Nachkommastellen mit nur
%
%
%
+\input{chapters/040-rekursion/bohrmollerup.tex}
+\input{chapters/040-rekursion/integral.tex}
diff --git a/buch/chapters/040-rekursion/integral.tex b/buch/chapters/040-rekursion/integral.tex
new file mode 100644
index 0000000..df52a58
--- /dev/null
+++ b/buch/chapters/040-rekursion/integral.tex
@@ -0,0 +1,103 @@
+%
+% integral.tex
+%
+% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Hochschule
+%
+\subsection{Integraldarstellung und der Satz von Bohr-Mollerup
+\label{buch:subsection:integral-eindeutig}}
+Die Integralformel
+\[
+f(x)
+=
+\int_0^\infty t^{x-1}e^{-t}\,dt
+\]
+für die Gamma-Funktion erfüllt die Funktionalgleichung der Gamma-Funktion.
+Aus dem Satz von Bohr-Mollerup~\ref{buch:satz:bohr-mollerup} folgt,
+dass $f(x)=\Gamma(x)$, wenn gezeigt werden kann, dass $\log f(x)$
+konvex ist.
+Dies soll im Folgenden gezeigt werden.
+
+\subsubsection{Logarithmische Ableitung}
+Die Ableitungen der Funktion $\log f(x)$ sind die erste und
+zweite logarithmische
+Ableitung
+\begin{align}
+\frac{d}{dx}\log f(x)
+&=
+\frac{f'(x)}{f(x)}
+\notag
+\\
+\frac{d^2}{dx^2} \log f(x)
+&=
+\frac{f''(x)f(x)-f'(x)^2}{f(x)^2}.
+\label{buch:rekursion:eqn:zweiteablteitung}
+\end{align}
+Durch Ableiten unter dem Integralzeichen können die Ableitungen
+von $f$ als
+\begin{align*}
+f'(x)
+&=
+\int_0^\infty \log(t)\, t^{x-1} e^{-t}\,dt
+\\
+f''(x)
+&=
+\int_0^\infty \log(t)^2\, t^{x-1} e^{-t}\,dt
+\end{align*}
+bestimmt werden.
+Um nachzuweisen, dass $\log f(x)$ konvex ist, muss nur gezeigt werden,
+dass die zweite logarithmische Ableitung von $f(x)$ positiv ist, was
+gemäss~\eqref{buch:rekursion:eqn:zweiteablteitung} mit
+\begin{equation}
+f''(x)f(x)-f'(x)^2
+=
+\int_0^\infty \log(t)^2\, t^{x-1}e^{-t}\,dt
+\int_0^\infty t^{x-1}e^{-t}\,dt
+-
+\biggl(
+\int_0^\infty \log(t)\, t^{x-1}e^{-t}\,dt
+\biggr)^2
+\ge 0
+\label{buch:rekursion:gamma-integral:ungleichung}
+\end{equation}
+gleichbedeutend ist.
+
+\subsubsection{Skalarprodukt}
+Die Integral in~\eqref{buch:rekursion:gamma-integral:ungleichung}
+können als Werte eines Skalarproduktes von Funktionen auf $\mathbb{R}^+$
+gelesen werden.
+Dazu definieren wir
+\begin{align}
+\langle u,v\rangle
+&=
+\int_0^\infty u(t)v(t)\,t^{x-1}e^{-t}\,dt
+\label{buch:rekursion:gamma-integral:eqn:skalarprodukt}
+\\
+\|u\|^2
+&=
+\int_0^\infty u(t)^2 \,t^{x-1}e^{-t}\,dt,
+\notag
+\end{align}
+für alle Funktionen $u$ und $v$, für die die Integrale definiert sind.
+
+\subsubsection{Cauchy-Schwarz-Ungleichung}
+Die Cauchy-Schwarz-Ungleichung für das
+Skalarprodukt~\eqref{buch:rekursion:gamma-integral:eqn:skalarprodukt}
+für die Funktion $u(t)=1$ und $v(t)=\log(t)$
+lautet
+\[
+|\langle u,v\rangle|^2
+=
+\biggl|
+\int_0^1 \log(t)\,t^{x-1}e^{-t}\,dt
+\biggr|^2
+\le
+\|u\|^2\cdot \|v\|^2
+=
+\int_0^\infty 1\cdot t^{x-1}e^{-t}\,dt
+\int_0^\infty \log(t)^2\cdot t^{x-1}e^{-t}\,dt.
+\]
+Daraus folgt aber durch Umstellen unmittelbar die
+Ungleichung~\eqref{buch:rekursion:gamma-integral:ungleichung}.
+Damit ist gezeigt, dass $\log f(t)$ konvex ist und nach
+dem Satz~\ref{buch:satz:bohr-mollerup} folgt nun, dass $f(x)=\Gamma(x)$.
+