aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/020-exponential/log.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/020-exponential/log.tex')
-rw-r--r--buch/chapters/020-exponential/log.tex310
1 files changed, 310 insertions, 0 deletions
diff --git a/buch/chapters/020-exponential/log.tex b/buch/chapters/020-exponential/log.tex
index 3bfb346..add63c3 100644
--- a/buch/chapters/020-exponential/log.tex
+++ b/buch/chapters/020-exponential/log.tex
@@ -5,5 +5,315 @@
%
\section{Logarithmen
\label{buch:exponential:section:logarithmen}}
+Heutezutage wird die Logarithmusfunktion als die Umkehrfunktion
+der Exponentialfunktion definiert.
+Ihren Ursprung hat sie jedoch im Bemühen, eine Methode zur Vereinfachung
+der numerischen Rechnung zu finden.
+In diesem Abschnitt soll die Geschichte kurz nachgezeichnet werden.
+
+\subsection{Multiplikation}
+Die Schwierigkeit besteht vor allem darin, dass Multiplikationen
+sehr viel aufwendiger sind als Additionen.
+So braucht man für die Addition zweier $n$-stelliger Zahlen
+genau $n$ Additionen einstelliger Zahlen mit Übertrag.
+Für die Multiplikation sind zunächst $n^2$ einstellige Multiplikationen
+gefolgt von $n(n-1)$ Additionen einstelliger Zahlen mit Übertrag notwenig,
+um einen Faktor mit jeder Stelle des anderen zu multiplizieren.
+Anschliessend müssen dann $(n-1)^2$ einstellige Multiplikationen
+gefolgt von einstelligen Additionen mit Übertrag ausgeführt werden,
+um die Summe zu bilden.
+Der Aufwand für eine Multiplikation wächst also quadratisch mit
+der Genauigkeit, während der Aufwand für die addition nur linear
+anwächst.
+
+Eine gebräuchlich Methode war die Verwendung der trigonometrischen
+Identität
+\begin{align*}
+\sin(\alpha)\sin(\beta)
+&=
+\frac12
+\cos(\alpha-\beta)
+-
+\frac12
+\cos(\alpha+\beta).
+\intertext{Dies kann mit einer Tabelle nur der Sinus-Werte durchgeführt
+werden, indem man verwendet, dass $\sin x = \cos(90^\circ-x)$.
+Dies führt auf die Identität }
+\sin(\alpha)\sin(\beta)
+&=
+\frac12\bigl(\sin(90^\circ-\alpha+\beta)
+-
+\sin(90^\circ-\alpha-\beta)\bigr)
+\end{align*}
+Die Multiplikation der Zahlen $\sin\alpha$ und $\sin\beta$ verlangt
+daher nur zwei Konsultationen der Sinus-Tabelle, um die Winkel
+$\alpha$ und $\beta$ zu bestimmen, zwei Additionen zur Berechnung
+von
+$90^\circ-\alpha+\beta$
+und
+$90^\circ-\alpha-\beta$,
+zwei Konsultationen der Sinus-Tabelle gefolgt von einer Addition
+und einer
+Halbierungsoperationen, die sich ähnlich effizient wie Additionen
+durchführen lässt.
+Der Aufwand dieser Art der Durchführung der Multplikation ist also
+gleich gross wie $4$ Additionen und $4$ Tabellenkonsultationen.
+
+\begin{beispiel}
+In Abschnitt~\ref{buch:trigo:subsection:tabelle} ist beschrieben, wie
+schon im Altertum Tabellen für Sinus-Werte aufgestellt werden konnten.
+Mit der Tabelle~\ref{buch:trigo:table:sinus} kann man zum Beispiel die
+folgende Multiplikation durchführen.
+Gesucht ist das Produkt der Zahlen $x=0.51503807$ und $y=0.80901169$.
+Die Berechnung läuft wie folgt ab:
+\begin{align*}
+x&=0.80901169&
+&\Rightarrow&\sin\alpha &=x&
+&\Rightarrow&{\color{red}\alpha}&\approx {\color{red}54^\circ}
+\\
+y&=0.51503807&
+&\Rightarrow&\sin\beta &=y&
+&\Rightarrow&{\color{red}\beta}&\approx {\color{red}31^\circ}
+\\
+ & &
+& &{\color{red}\sin\delta_1}&={\color{red}0.92050485}&
+&\Leftarrow &{\color{blue}\delta_1}&=90^\circ-\alpha+\beta={\color{blue}67}
+\\
+ & &
+& &{\color{red}\sin\delta_2}&={\color{red}0.08715574}&
+&\Leftarrow &{\color{blue}\delta_2}&=90^\circ-\alpha-\beta={\color{blue}5}
+\\
+ &&
+ & &{\color{blue}\sin\delta_1+\sin\delta_2}&={\color{blue}0.83334911}
+\\
+xy&=0.41667455&
+ &\Leftarrow&\frac12(\sin\delta_1+\sin\delta_2)&={\color{darkgreen}0.41667455}
+\end{align*}
+Die roten Zahlen sind Resultate von Tabellenkonsultationen, die blauen
+ergeben sich durch Additionen, grün ist die Halbierungsoperation.
+Alle acht Stellen des Resultates sind korrekt.
+\end{beispiel}
+
+Das Verfahren funktioniert also, hat aber eine ganze Reihe von Nachteilen:
+\begin{enumerate}
+\item
+Die Zahl der Operationen ist ziemlich gross.
+Immerhin sind vier Tabellenkonsultationen nötig, drei Additionen und die
+Halbierungsoperation.
+\item
+Es funktioniert nur für Zahlen zwischen $0$ und $1$.
+Für Zahlen ausserhalb dieses Intervalls ist es die Aufgabe des
+Anwenders, eine Skalierung vorzunehmen und sie später bei der Angabe
+des Resultates wieder einfliessen zu lassen.
+Das Quadrat von $2$ kann berechnet werden als
+\(2^2 = 100 \cdot 0.2\cdot 0.2\), was mit dem Winkel
+$\alpha=\beta=11.537^\circ$ möglich ist.
+Das Resultat der Multiplikation nach obigem Verfahren ist dann
+\[
+\frac12\bigl(
+\sin(90^\circ-\alpha+\beta)
+-
+\sin(90^\circ-\alpha-\beta)
+\bigr)
+=
+\frac12\bigl(
+1-
+\sin 66.926^\circ
+\bigr)
+=
+\frac12( 1-0.9200)
+=
+\frac12\cdot 0.08=0.04,
+\]
+woraus sich dann das Quadrat von $2$ als
+$2^2 = 100\cdot 0.2^2 = 100\cdot 0.04 = 4$
+ergibt.
+Dieser Nachteil gilt allerdings auch für Rechenverfahren mit Logarithmen
+oder mit einem Rechenschieber, bei dem ebenfalls nur die Mantisse
+berechnet wird, der Anwender ist selbst für die Bestimmung des Exponenten
+verantwortlich.
+\item
+Es kann vorkommen, dass die Winkel $90^\circ-\alpha+\beta$
+und $90^\circ-\alpha-\beta$ nicht im Intervall zwischen $0$ und $90^\circ$
+liegen.
+In diesem Fall ist eine zusätzliche Reduktion des Winkels nötig.
+Falls der Winkel negativ ist, muss in den folgenden Schritt zusätzlich
+das Vorzeichen berücksichtigt werden.
+\end{enumerate}
+
+
+\subsection{Die Erfindung der Logarithmen}
+Die Lösung des Problems ist die Verwendung von Exponentialfunktionen
+anstelle von trigonometrischen Funktionen.
+Um das Produkt von zwei Zahlen $x$ und $y$ zu bestimmen, müssen erst
+die Exponenten $\xi$ und $\eta$ bestimmt werden, für die $x=b^\xi$
+$y=b^\eta$ ist.
+Das Produkt ist dann $xy = b^{\xi+\eta}$, es muss also die Summe
+$\xi+\eta$ berechnet werden und aus einer Tabelle der Funktion
+$b^\bullet$ kann dann das Produkt abgelesen werden.
+Der Wert der Basis $b$ ist dabei noch frei und wurde auch von
+den Erfindern der Logarithmen verschieden angegangen.
+
+\subsubsection{Die arithmetischen Progresstabulen von Jost Bürgi}
+\begin{figure}
+\centering
+\includegraphics{chapters/020-exponential/images/Log_Calc-Figure7.jpeg}
+\caption{Ausschnitt aus der ersten Seite von Jost Bürgis Tabelle der
+Potenzen von $1.0001$
+\label{buch:exponential:log:fig:buergi1}}
+\end{figure}
+\begin{figure}
+\centering
+\includegraphics[width=0.92\textwidth]{chapters/020-exponential/images/buergiausschnitt.pdf}
+\caption{Rekonstruktion der ersten Seite von Bürgis Tabelle aus
+\cite{buch:hal}
+\label{buch:exponential:log:fig:buergi2}}
+\end{figure}
+Der 1552 in Lichtensteig geborene schweizer Uhrmacher und Mathematiker
+hat in seinem Werk
+{\em Arithmetische und geometrische Progress Tabulen sambt gründlichem
+unterricht, wie solche nützlich in allerley Rechnungen zugebrauchen
+und verstanden werden soll}, welches 1620 in Prag erschien,
+eine Tabelle aller Werte
+\[
+10^8\cdot\biggl(1+\frac{1}{10000}\biggr)^n
+=
+10^8 \biggl(\biggl(1+\frac{1}{10000}\biggr)^{10000}\biggr)^{n\cdot10^{-4}}
+\]
+für $n=0$ bis $n=23027$.
+Die Abbildung~\ref{buch:exponential:log:fig:buergi1}
+zeigt, einen Ausschnitt aus der ersten Seite von Bürgis Tabelle.
+Die mit 10 multiplizierten Exponenten $n$ sind durchwegs als
+{\color{red}rote} Zahlen dargestellt.
+In jeder Spalten stehen 40 aufeinanderfolgende Werte, von Spalte
+zu Spalten nimmt der Wert von $n$ um 500 zu.
+Abbildung~\ref{buch:exponential:log:fig:buergi2} zeigt eine Rekonstruktion
+der ersten Seite.
+
+Um mit der Bürgischen Tafel eine Multiplikation durchzuführen,
+hat man also unter den schwarzen Zahlen Werte gesucht,
+der möglichst nahe an den gegebenen Faktoren sind.
+Dabei konnte die Genauigkeit noch gesteigert werden, indem zwischen
+aufeinanderfolgenden Werten interpoliert wurde.
+Die zugehörigen roten Zahlen wurden dann addiert und mit Hilfe der
+Tabelle wieder die schwarzen Zahlen ermittelt.
+
+\begin{beispiel}
+Die erste Seite \ref{buch:exponential:log:fig:buergi2} der Bürgischen
+Tabelle umfasst natürlich nur einen sehr kleine Teil des ganzen Werkes,
+trotzdem kann man daran den Gang der Rechnung illustrieren.
+Um die beiden schwarzen Zahlen $x=1.0023$ und $y=1.0017$ miteinander
+zu multiplizieren, sucht man die zugehörigen roten Zahlen in
+der Tabelle
+\[
+\renewcommand{\arraycolsep}{2pt}
+\begin{array}{rclcr}
+ & &\text{schwarze Zahl}&&\text{{\color{red}rote Zahl}} \\
+ x&=&1.0023 &\Rightarrow&{\color{red}2274}\\
+ y&=&1.0017 &\Rightarrow&{\color{red}1686}\\
+ xy&=&1.004039247 &\Leftarrow &{\color{red}3960}
+%\text{exakt}&=&1.0040391 & &
+\end{array}
+\]
+Das exakte Result ist $xy=1.0040391$.
+\end{beispiel}
+
+Die roten Zahlen werden in heutiger Terminologie Logarithmen zur
+Basis $b=1.0001$ im Wesentlichen genannt.
+In der Tabelle werden die Werte von $b^n$ in Abhängigkeit von $n$
+angegeben, es wurde also direkt die Exponentialfunktion $b^\bullet$
+tabuliert.
+In heutiger Sprechweise würde man dies als eine Antilogarithmentafel
+bezeichnen.
+
+\subsubsection{John Napier und die natürlichen Logarithmen}
+Der schottische Mathematiker John Napier (1550--1617) hat ein
+ausgeklügeltes Verfahren entwickelt,
+natürliche Logarithmen mit hoher Genauigkeit von mindestens sieben
+Stellen zu berechnen.
+Ausserdem hat er den Logarithmen ihren Namen gegeben.
+
+Um die Genauigkeit von sieben Stellen zu erreichen, musste er von
+einem Wert ausgehen, der nicht weiter als $10^{-7}$ von $1$ entfernt
+ist.
+Bürgi hat mit dem Wert $1+10^{-4}$ eine Genauigkeit von vier Stellen
+erreicht, Napier startete seine Berechnung mit $1-10^{-7}$.
+Er hat also eigentlich Logarithmen zur Basis $1/e$ bestimmt.
+
+Hätte Napier jedoch einfach nur das Verfahren von Bürgi auf die um
+den Faktor $10^3$ höhere Genauigkeit angewendet, hätte er auch $10^3$
+mal mehr und somit über 23 Millionen Multiplikationen durchführen
+müssen, im Laufe derer sich viel zu grosse Rundungsfehler akkumuliert
+hätten.
+Napier hat daher das gesamte Intervall in mehrer grössere Intervall
+unterteilt, indem er mit statt nur den Faktor $a=1-10^{-7}=0.9999999$
+auch noch geometrische Folgen mit den Faktoren $b=1-10^{-5}=0.99999$ und
+$c=1-5\cdot10^{-4}=0.9995$ verwendet hat.
+Mit 4604 Gliedern der Folge $c^k$ konnte er tatsächlich das ganze
+Intervall zwischen $0.1$ und $1$ geometrisch unterteilen.
+Innerhalb jedes Teilintervalls kann dann eine Unterteilung mit
+50 Gliedern der Folge $b^k$ aufteilen.
+Und schliesslich liefern 100 Gleider der Folge $a^k$ eine geometrische
+Unterteilung in jedes dieser Intervalle.
+Auf diese Art kann erreicht werden, dass jeder Wert mit höchstens 4755
+Multiplikationen und damit ohne Kompromittierung der Genauigkeit durch
+Rundungsfehler berechnet werden kann.
+
+Das Interpolationsverfahren, welches Napier zur Bestimmung seiner
+Logarithmen entwickelt hat, hat auch die Entwicklung von Rechenschiebern
+motiviert.
+
+\subsubsection{Dekadische Logarithmen nach Henry Briggs}
+Henry Briggs (1561--1630) hat die Bedeutung der Napierschen
+Logarithmen sofort erkannt und vorgeschlagen, statt der Basis $e$
+die Basis $10$ zu verwenden.
+Der Vorteil der Basis 10 ist, dass Zahlen mit der gleichen
+Mantisse in Gleitkommadarstellung zur Basis 10 Logarithmen haben,
+die sich nur im eine Ganzzahl unterschieden, die gleichzeitig der
+Unterschied der Exponenten ist.
+Dies macht die Verwendung einer Logarithmentabelle sehr viel
+intuitiver.
+
+Briggs hat ausserdem die numersiche Berechnung der Logarithmen
+weiterentwickelt und innerhalb von 7 Jahren 30000 Logarithmen mit
+einer Genauigkeit von 14 Stellen berechnet.
+Die Methoden von Bürgi und Napier gingen davon aus, das Intervall,
+in dem die Logarithmen bestimmt werden sollen, durch Konstruktion
+einer geometrischen Folge zu unterteilen.
+Zum Beispiel hat Bürgi das Intervall von $1$ bis $10$ mit Hilfe von
+23027 Multiplikationen von $1.0001$ zu unterteilen.
+Briggs fragte sich daher, ob sich eine Unterteilung auch in weniger
+Schritten erreichen liesse.
+
+Welchen Faktor $a$ muss man nehmen, wenn man das Intervall von
+$1$ bis $10$ geometrisch in zwei Teilintervalle unterteilen will.
+Der Faktor $a$ muss $a^2=10$ erfüllen, also $a=\sqrt{10}$.
+Somit haben wir in $\sqrt{10}$ einen Wert mit einem genau
+bekannten Zehnerlogarithmus von $0.5$ gefunden.
+
+Durch Iteration dieser Idee kann man durch $n$-faches
+wiederholtes Wurzelziehen die Zahlen mit den bekannten
+Logarithmen $2^{-n}$ bestimmen.
+Durch Darstellung eines Logarithmus im Binärsystem kann
+man dann die zugehörige Zahl durch nur so viele Multiplikationen
+bestimmen, wie Einsen in der Binärdarstellung des Logarithmus
+vorkommen.
+Damit ist der Rechenaufwand für die Berechnung einzelner
+Logarithmen sehr viel kleiner also in den Methoden von Bürgi
+und Napier.
+
+Die Briggssche Idee funktioniert besonders gut im Binärsystem,
+wenn also Logarithmen für Zahlen zwischen $1$ und $2$ bestimmt
+werden müssen.
+Im Binärsystem ist Division durch $2$ besonders einfach, sie ist
+einfach nur eine Verschiebung des Kommas.
+Auch für die Berechnung der Quadratwurzel gibt es effiziente
+binäre Algorithmen.
+
+
+
+
+
+