aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/060-integral/erweiterungen.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/060-integral/erweiterungen.tex')
-rw-r--r--buch/chapters/060-integral/erweiterungen.tex98
1 files changed, 96 insertions, 2 deletions
diff --git a/buch/chapters/060-integral/erweiterungen.tex b/buch/chapters/060-integral/erweiterungen.tex
index a999ebb..9138f3e 100644
--- a/buch/chapters/060-integral/erweiterungen.tex
+++ b/buch/chapters/060-integral/erweiterungen.tex
@@ -97,8 +97,8 @@ a_i\in K
\}
\label{buch:integral:eqn:algelement}
\end{equation}
-mit $n=\deg m(x) - 1$ der durch Adjunktion von $\alpha$ erhaltene
-Erweiterungsköper.
+mit $n=\deg m(x) - 1$ der durch {\em Adjunktion} oder Hinzufügen
+von $\alpha$ erhaltene Erweiterungsköper.
\end{definition}
Wieder muss nur überprüft werden, dass jedes Produkt oder jeder
@@ -151,7 +151,9 @@ Die Menge $\mathbb{Q}(i)$ ist daher eine algebraische Körpererweiterung
von $\mathbb{Q}$ bestehend aus den komplexen Zahlen mit rationalem
Real- und Imaginärteil.
+%
% Transzendente Körpererweiterungen
+%
\subsubsection{Transzendente Erweiterungen}
Nicht alle Zahlen in $\mathbb{R}$ sind algebraisch.
Lindemann bewies 1882 einen allgemeinen Satz, aus dem folgt,
@@ -201,7 +203,9 @@ $K\subset K(\alpha)$ ist zwar immer noch eine Körpererweiterung, aber
$K(\alpha)$ ist nicht mehr ein endlichdimensionaler Vektorraum.
Die Körpererweiterung $K\subset K(\alpha)$ heisst {\em transzendent}.
+%
% rationale Funktionen als Körpererweiterungen
+%
\subsubsection{Rationale Funktionen als Körpererweiterung}
Die unabhängige Variable wird bei Rechnen so behandelt, dass die
Potenzen alle linear unabhängig sind.
@@ -209,7 +213,9 @@ Dies ist die Grundlage für den Koeffizientenvergleich.
Der Körper der rationalen Funktion $K(x)$
ist also eine transzendente Körpererweiterung von $K$.
+%
% Erweiterungen mit algebraischen Funktionen
+%
\subsubsection{Algebraische Funktionen}
Für das Integrationsproblem möchten wir nicht nur rationale Funktionen
verwenden können, sondern auch Wurzelfunktionen.
@@ -246,4 +252,92 @@ $y=\sqrt{ax^2+bx+c}$ zu $K(x,y)=K(x,\sqrt{ax^2+bx+c}$ erweitert.
Wurzelfunktion werden daher nicht als Zusammensetzungen, sondern als
algebraische Erweiterungen eines Funktionenkörpers betrachtet.
+%
+% Konjugation
+%
+\subsubsection{Konjugation}
+Die komplexen Zahlen sind die algebraische Erweiterung der reellen Zahlen
+um die Nullstelle $i$ des Polynoms $m(x)=x^2+1$.
+Die Zahl $-i$ ist aber auch eine Nullstelle von $m(x)$, die mit algebraischen
+Mitteln nicht von $i$ unterscheidbar ist.
+Die komplexe Konjugation $a+bi\mapsto a-bi$ vertauscht die beiden
+\index{Konjugation, komplexe}%
+\index{komplexe Konjugation}%
+Nullstellen des Minimalpolynoms.
+
+Ähnliches gilt für die Körpererweiterung $\mathbb{Q}(\!\sqrt{2})$.
+$\sqrt{2}$ und $\sqrt{2}$ sind beide Nullstellen des Minimalpolynoms
+$m(x)=x^2-2$, die mit algebraischen Mitteln nicht unterschiedbar sind.
+Sie haben zwar verschiedene Vorzeichen, doch ohne eine Ordnungsrelation
+können diese nicht unterschieden werden.
+\index{Ordnungsrelation}%
+Eine Ordnungsrelation zwischen rationalen Zahlen lässt sich zwar
+definieren, aber die Zahl $\sqrt{2}$ ist nicht rational, es braucht
+also eine zusätzliche Annahme, zum Beispiel die Identifikation von
+$\sqrt{2}$ mit einer reellen Zahl in $\mathbb{R}$, wo der Vergleich
+möglich ist.
+
+Auch in $\mathbb{Q}(\!\sqrt{2})$ ist die Konjugation
+$a+b\sqrt{2}\mapsto a-b\sqrt{2}$ eine Selbstabbildung, die
+die Körperoperationen respektiert.
+
+Das Polynom $m(x)=x^2-x-1$ hat die Nullstellen
+\[
+\frac12 \pm\sqrt{\biggl(\frac12\biggr)^2+1}
+=
+\frac{1\pm\sqrt{5}}{2}
+=
+\left\{
+\bgroup
+\renewcommand{\arraystretch}{2.20}
+\renewcommand{\arraycolsep}{2pt}
+\begin{array}{lcl}
+\displaystyle
+\frac{1+\sqrt{5}}{2} &=& \phantom{-}\varphi \\
+\displaystyle
+\frac{1-\sqrt{5}}{2} &=& \displaystyle-\frac{1}{\varphi}.
+\end{array}
+\egroup
+\right.
+\]
+Sie erfüllen die gleiche algebraische Relation $x^2=x+1$.
+Sie sind sowohl im Vorzeichen wie auch im absoluten Betrag
+verschieden, beides verlangt jedoch eine Ordnungsrelation als
+Voraussetzung, die uns fehlt.
+Aus beiden kann man mit rationalen Operationen $\sqrt{5}$ gewinnen,
+denn
+\[
+\sqrt{5}
+=
+4\varphi-1
+=
+-4\biggl(-\frac{1}{\varphi}\biggr)^2-1
+\qquad\Rightarrow\qquad
+\mathbb{Q}(\!\sqrt{5})
+=
+\mathbb{Q}(\varphi)
+=
+\mathbb{Q}(-1/\varphi).
+\]
+Die Abbildung $a+b\varphi\mapsto a-b/\varphi$ ist eine Selbstabbildung
+des Körpers $\mathbb{Q}(\!\sqrt{5})$, welche die beiden Nullstellen
+vertauscht.
+
+Dieses Phänomen gilt für jede algebraische Erweiterung.
+Die Nullstellen des Minimalpolynoms, welches die Erweiterung
+definiert, sind grundsätzlich nicht unterscheidbar.
+Mit der Adjunktion einer Nullstelle enthält der Erweiterungskörper
+auch alle anderen.
+Sind $\alpha_1$ und $\alpha_2$ zwei Nullstellen des Minimalpolynoms,
+dann definiert die Abbildung $\alpha_1\mapsto\alpha_2$ eine Selbstabbildung,
+die die Nullstellen permutiert.
+
+Die algebraische Körpererweiterung
+$\mathbb{Q}(x)\subset \mathbb{Q}(x,\sqrt{ax^2+bx+c})$
+ist nicht unterscheidbar von
+$\mathbb{Q}(x)\subset \mathbb{Q}(x,-\!\sqrt{ax^2+bx+c})$.
+Für das Integrationsproblem bedeutet dies, dass alle Methoden so
+formuliert werden müssen, dass die Wahl der Nullstellen auf die
+Lösung keinen Einfluss haben.
+