aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/070-orthogonalitaet/bessel.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/070-orthogonalitaet/bessel.tex')
-rw-r--r--buch/chapters/070-orthogonalitaet/bessel.tex91
1 files changed, 91 insertions, 0 deletions
diff --git a/buch/chapters/070-orthogonalitaet/bessel.tex b/buch/chapters/070-orthogonalitaet/bessel.tex
new file mode 100644
index 0000000..3e9412a
--- /dev/null
+++ b/buch/chapters/070-orthogonalitaet/bessel.tex
@@ -0,0 +1,91 @@
+%
+% Besselfunktionen also orthogonale Funktionenfamilie
+%
+\section{Bessel-Funktionen als orthogonale Funktionenfamilie}
+\rhead{Bessel-Funktionen}
+Auch die Besselfunktionen sind eine orthogonale Funktionenfamilie.
+Sie sind Funktionen differenzierbaren Funktionen $f(r)$ für $r>0$
+mit $f'(r)=0$ und für $r\to\infty$ nimmt $f(r)$ so schnell ab, dass
+auch $rf(r)$ noch gegen $0$ strebt.
+Das Skalarprodukt ist
+\[
+\langle f,g\rangle
+=
+\int_0^\infty r f(r) g(r)\,dr,
+\]
+als Operator verwenden wir
+\[
+A = \frac{d^2}{dr^2} + \frac{1}{r}\frac{d}{dr} + s(r),
+\]
+wobei $s(r)$ eine beliebige integrierbare Funktion sein kann.
+Zunächst überprüfen wir, ob dieser Operator wirklich selbstadjungiert ist.
+Dazu rechnen wir
+\begin{align}
+\langle Af,g\rangle
+&=
+\int_0^\infty
+r\,\biggl(f''(r)+\frac1rf'(r)+s(r)f(r)\biggr) g(r)
+\,dr
+\notag
+\\
+&=
+\int_0^\infty rf''(r)g(r)\,dr
++
+\int_0^\infty f'(r)g(r)\,dr
++
+\int_0^\infty s(r)f(r)g(r)\,dr.
+\notag
+\intertext{Der letzte Term ist symmetrisch in $f$ und $g$, daher
+ändern wir daran weiter nichts.
+Auf das erste Integral kann man partielle Integration anwenden und erhält}
+&=
+\biggl[rf'(r)g(r)\biggr]_0^\infty
+-
+\int_0^\infty f'(r)g(r) + rf'(r)g'(r)\,dr
++
+\int_0^\infty f'(r)g(r)\,dr
++
+\int_0^\infty s(r)f(r)g(r)\,dr.
+\notag
+\intertext{Der erste Term verschwindet wegen der Bedingungen an die
+Funktionen $f$ und $g$.
+Der erste Term im zweiten Integral hebt sich gegen das
+zweite Integral weg.
+Der letzte Term ist das Skalarprodukt von $f'$ und $g'$.
+Somit ergibt sich
+}
+&=
+-\langle f',g'\rangle
++
+\int_0^\infty s(r) f(r)g(r)\,dr.
+\label{buch:integrale:orthogonal:besselsa}
+\end{align}
+Vertauscht man die Rollen von $f$ und $g$, erhält man das Gleiche, da im
+letzten Ausdruck~\eqref{buch:integrale:orthogonal:besselsa} die Funktionen
+$f$ und $g$ symmetrische auftreten.
+Damit ist gezeigt, dass der Operator $A$ selbstadjungiert ist.
+Es folgt nun, dass Eigenvektoren des Operators $A$ automatisch
+orthogonal sind.
+
+Eigenfunktionen von $A$ sind aber Lösungen der Differentialgleichung
+\[
+\begin{aligned}
+&&
+Af&=\lambda f
+\\
+&\Rightarrow\qquad&
+f''(r) +\frac1rf'(r) + s(r)f(r) &= \lambda f(r)
+\\
+&\Rightarrow\qquad&
+r^2f''(r) +rf'(r)+ (-\lambda r^2+s(r)r^2)f(r) &= 0
+\end{aligned}
+\]
+sind.
+
+Durch die Wahl $s(r)=1$ wird der Operator $A$ zum Bessel-Operator
+$B$ definiert in
+\eqref{buch:differentialgleichungen:bessel-operator}.
+Die Lösungen der Besselschen Differentialgleichung zu verschiedenen Werten
+des Parameters müssen also orthogonal sein, insbesondere sind die
+Besselfunktion $J_\nu(r)$ und $J_\mu(r)$ orthogonal wenn $\mu\ne\nu$ ist.
+