diff options
Diffstat (limited to 'buch/chapters/070-orthogonalitaet')
-rw-r--r-- | buch/chapters/070-orthogonalitaet/Makefile.inc | 2 | ||||
-rw-r--r-- | buch/chapters/070-orthogonalitaet/gaussquadratur.tex | 8 | ||||
-rw-r--r-- | buch/chapters/070-orthogonalitaet/sturm.tex | 2 |
3 files changed, 7 insertions, 5 deletions
diff --git a/buch/chapters/070-orthogonalitaet/Makefile.inc b/buch/chapters/070-orthogonalitaet/Makefile.inc index 286ab2e..8f58489 100644 --- a/buch/chapters/070-orthogonalitaet/Makefile.inc +++ b/buch/chapters/070-orthogonalitaet/Makefile.inc @@ -4,7 +4,7 @@ # (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # -CHAPTERFILES = $(CHAPTERFILES) \ +CHAPTERFILES += \ chapters/070-orthogonalitaet/orthogonal.tex \ chapters/070-orthogonalitaet/rekursion.tex \ chapters/070-orthogonalitaet/rodrigues.tex \ diff --git a/buch/chapters/070-orthogonalitaet/gaussquadratur.tex b/buch/chapters/070-orthogonalitaet/gaussquadratur.tex index acfdb1a..2e43cec 100644 --- a/buch/chapters/070-orthogonalitaet/gaussquadratur.tex +++ b/buch/chapters/070-orthogonalitaet/gaussquadratur.tex @@ -263,7 +263,7 @@ werden können, muss auch = \int_{-1}^1 q(x)p(x)\,dx = -\sum_{i=0}^n q(x_i)p(x_i) +\sum_{i=0}^n A_iq(x_i)p(x_i) \] für jedes beliebige Polynom $q\in R_{n-1}$ gelten. Da man für $q$ die Interpolationspolynome $l_j(x)$ verwenden @@ -272,9 +272,11 @@ kann, den Grad $n-1$ haben, folgt 0 = \sum_{i=0}^n -l_j(x_i)p(x_i) +A_il_j(x_i)p(x_i) = -\sum_{i=0}^n \delta_{ij}p(x_i), +\sum_{i=0}^n A_i\delta_{ij}p(x_i) += +A_jp(x_j), \] die Stützstellen $x_i$ müssen also die Nullstellen des Polynoms $p(x)$ sein. diff --git a/buch/chapters/070-orthogonalitaet/sturm.tex b/buch/chapters/070-orthogonalitaet/sturm.tex index c9c9cc6..35054ab 100644 --- a/buch/chapters/070-orthogonalitaet/sturm.tex +++ b/buch/chapters/070-orthogonalitaet/sturm.tex @@ -375,7 +375,7 @@ automatisch für diese Funktionenfamilien. \subsubsection{Trigonometrische Funktionen} Die trigonometrischen Funktionen sind Eigenfunktionen des Operators $d^2/dx^2$, also eines Sturm-Liouville-Operators mit $p(x)=1$, $q(x)=0$ -und $w(x)=0$. +und $w(x)=1$. Auf dem Intervall $(-\pi,\pi)$ können wir die Randbedingungen \bgroup \renewcommand{\arraycolsep}{2pt} |