diff options
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/080-funktionentheorie/chapter.tex | 5 | ||||
-rw-r--r-- | buch/chapters/080-funktionentheorie/singularitaeten.tex | 176 |
2 files changed, 174 insertions, 7 deletions
diff --git a/buch/chapters/080-funktionentheorie/chapter.tex b/buch/chapters/080-funktionentheorie/chapter.tex index b7b5325..aa1041a 100644 --- a/buch/chapters/080-funktionentheorie/chapter.tex +++ b/buch/chapters/080-funktionentheorie/chapter.tex @@ -37,11 +37,6 @@ auf der rellen Achse hinaus fortsetzen. \input{chapters/080-funktionentheorie/fortsetzung.tex} \input{chapters/080-funktionentheorie/anwendungen.tex} -\section{TODO} -\begin{itemize} -\item Aurgument-Prinzip -\end{itemize} - \section*{Übungsaufgaben} \rhead{Übungsaufgaben} \aufgabetoplevel{chapters/080-funktionentheorie/uebungsaufgaben} diff --git a/buch/chapters/080-funktionentheorie/singularitaeten.tex b/buch/chapters/080-funktionentheorie/singularitaeten.tex index 07204ab..6742865 100644 --- a/buch/chapters/080-funktionentheorie/singularitaeten.tex +++ b/buch/chapters/080-funktionentheorie/singularitaeten.tex @@ -5,6 +5,9 @@ % \newcommand*\sk{\vcenter{\hbox{\includegraphics[scale=0.8]{chapters/080-funktionentheorie/images/operator-1.pdf}}}} +% +% Löesung linearer Differentialgleichunge mit Singularitäten +% \subsection{Lösungen von linearen Differentialgleichungen mit Singularitäten \label{buch:funktionentheorie:subsection:dglsing}} Die Potenzreihenmethode hat ermöglicht, mindestens eine Lösung gewisser @@ -19,6 +22,9 @@ Ziel dieses Abschnitts ist zu zeigen, warum dies nicht möglich war und wie diese Schwierigkeit mit Hilfe der analytischen Fortsetzung überwunden werden kann. +% +% Differentialgleichungen mit Singularitäten +% \subsubsection{Differentialgleichungen mit Singularitäten} Mit der Besselschen Differentialgleichung~\eqref{buch:differentialgleichungen:eqn:bessel} @@ -93,6 +99,9 @@ Klasse von Singularitäten beschreiben, aber es ist nicht klar, welche weiteren Arten von Singularitäten berücksichtigt werden sollten. Dies soll im Folgenden geklärt werden. +% +% Der Lösungsraum einer Differentialgleichung zweiter Ordnung +% \subsubsection{Der Lösungsraum einer Differentialgleichung zweiter Ordnung} Eine Differentialgleichung $n$-ter Ordnung hat lokal einen $n$-dimensionalen Vektorraum als Lösungsraum. @@ -126,6 +135,9 @@ Wenn der Punkt $x_0$ aus dem Kontext klar ist, kann er auch weggelassen werden: $\mathbb{L}_{x_0}=\mathbb{L}$. \end{definition} +% +% Analytische Fortsetzung auf dem Weg um 0 +% \subsubsection{Analytische Fortsetzung auf einem Weg um $0$} Die betrachteten Differentialgleichungen haben holomorphe Koeffizienten, Lösungen der Differentialgleichung lassen sich @@ -186,6 +198,9 @@ e^{2\pi i\varrho} z^\varrho \] schreiben. +% +% Rechenregeln für die analytische Fortsetzung +% \subsubsection{Rechenregeln für die analytische Fortsetzung} Der Operator $\sk$ ist ein Algebrahomomorphismus, d.~h.~für zwei analytische Funktionen $f$ und $g$ gilt @@ -215,7 +230,9 @@ vertauscht, dass also \sk(f^{(n)}). \] - +% +% Analytische Fortsetzung von Lösungen einer Differentialgleichung +% \subsubsection{Analytische Fortsetzung von Lösungen einer Differentialgleichung} Wir untersuchen jetzt die Wirkung des Operators $\sk$ auf den Lösungsraum $\mathbb{L}$ einer Differentialgleichung mit @@ -258,7 +275,9 @@ geeigneten Basis in besonders einfache Form gebracht. Wir führen diese Diskussion im folgenden nur für eine Differentialgleichung zweiter Ordnung $n=2$. - +% +% Fall A diagonalisierbar +% \subsubsection{Fall $A$ diagonalisierbar: verallgemeinerte Potenzreihen} In diesem Fall kann man die Lösungsfunktionen $w_1$ und $w_2$ so wählen, dass die Matrix @@ -326,6 +345,9 @@ Falls der Operator $\sk$ also diagonalisierbar ist, dann gibt es zwei linear unabhängige Lösungen der Differentialgleichung in der Form einer verallgemeinerten Potenzreihe. +% +% Fall $A$ nicht diagonalisierbar +% \subsubsection{Fall $A$ nicht diagonalisierbar: logarithmische Lösungen} Falls die Matrix $A$ nicht diagonalisierbar ist, hat sie nur einen Eigenwert $\lambda$ und kann durch geeignete Wahl einer Basis in @@ -421,8 +443,158 @@ in die ursprüngliche Differentialgleichung ein, verschwindet der $\log(z)$-Term und für die verbleibenden Koeffizienten kann die bekannte Methode des Koeffizientenvergleichs verwendet werden. +% +% Bessel-Funktionen zweiter Art +% \subsubsection{Bessel-Funktionen zweiter Art \label{buch:funktionentheorie:subsubsection:bessel2art}} +Im Abschnitt~\ref{buch:differentialgleichungen:subsection:bessel1steart} +waren wir nicht in der Lage, für ganzahlige $\alpha$ zwei linear unabhängige +Lösungen der Besselschen Differentialgleichung zu finden. +Die vorangegangenen Ausführungen erklären dies: der Ansatz als +verallgemeinerte Potenzreihe konnte die Singularität nicht wiedergeben. +Inzwischen wissen wir, dass wir nach einer Lösung mit einer logarithmischen +Singularität suchen müssen. +Um dies nachzuprüfen, setzen wir den Ansatz +\[ +y(x) = \log(x) J_n(x) + z(x) +\] +in die Besselsche Differentialgleichung ein. +Dazu benötigen wir erst die Ableitungen von $y(x)$: +\begin{align*} +y'(x) +&= +\frac{1}{x} J_n(x) + \log(x)J_n'(x) + z'(x) +\\ +xy'(x) +&= +J_n(x) + x\log(x)J_n'(x) + xz'(x) +\\ +y''(x) +&= +-\frac{1}{x^2} J_n(x) ++\frac2x J_n'(x) ++\log(x) J_n''(x) ++z''(x) +\\ +x^2y''(x) +&= +-J_n(x) + 2xJ'_n(x)+x^2\log(x)J_n''(x) + x^2z''(x). +\end{align*} +Die Wirkung des Bessel-Operators auf $y(x)$ ist +\begin{align*} +By +&= +x^2y''+xy'+x^2y +\\ +&= +\log(x) \bigl( +\underbrace{ +x^2J_n''(x) ++xJ_n'(x) ++x^2J_n(x) +}_{\displaystyle = n^2J_n(x)} +\bigr) +-J_n(x)+2xJ_n'(x) ++J_n(x) ++ +xz'(x) ++ +x^2z''(x) +\\ +&= +n^2 \log(x)J_n(x) ++ +2xJ_n(x) ++ +x^2z(x) ++ +xz'(x) ++ +x^2z''(x) +\end{align*} +Damit $y(x)$ eine Eigenfunktion zum Eigenwert $n^2$ wird, muss +dies mit $n^2y(x)$ übereinstimmen, also +\begin{align*} +n^2 \log(x)J_n(x) ++ +2xJ_n(x) ++ +x^2z(x) ++ +xz'(x) ++ +x^2z''(x) +&= +n^2\log(x)J_n(x) + n^2z(x). +\intertext{Die logarithmischen Terme heben sich weg und es bleibt} +x^2z''(x) ++ +xz'(x) ++ +(x^2-n^2)z(x) +&= +-2xJ_n(x). +\end{align*} +Eine Lösung für $z(x)$ kann mit Hilfe eines Potenzreihenansatzes +gefunden werden. +Sie ist aber nur bis auf einen Faktor festgelegt. +Tatsächlich kann man aber auch eine direkte Definition geben. + +\begin{definition} +Die Bessel-Funktionen zweiter Art der Ordnung $\alpha$ sind die Funktionen +\begin{equation} +Y_\alpha(x) += +\frac{J_\alpha(x) \cos \alpha\pi - J_{-\alpha}(x)}{\sin \alpha\pi }. +\label{buch:funktionentheorie:bessel:2teart} +\end{equation} +Für ganzzahliges $\alpha$ verschwindet der Nenner in +\eqref{buch:funktionentheorie:bessel:2teart}, +daher ist +\[ +Y_n(x) += +\lim_{\alpha\to n} Y_{\alpha}(x) += +\frac{1}{\pi}\biggl( +\frac{d}{d\alpha}J_{\alpha}(x)\bigg|_{\alpha=n} ++ +(-1)^n +\frac{d}{d\alpha}J_{\alpha}(x)\bigg|_{\alpha=-n} +\biggr). +\] +\end{definition} +Die Funktionen $Y_\alpha(x)$ sind Linearkombinationen der Lösungen +$J_\alpha(x)$ und $J_{-\alpha}(x)$ und damit automatisch auch Lösungen +der Besselschen Differentialgleichung. +Dies gilt auch für den Grenzwert im Falle ganzahliger Ordnung $\alpha$. +Da $J_{\alpha}(x)$ durch eine Reihenentwicklung definiert ist, kann man +diese Termweise nach $\alpha$ ableiten und damit auch eine +Reihendarstellung von $Y_n(x)$ finden. +Nach einiger Rechnung findet man: +\begin{align*} +Y_n(x) +&= +\frac{2}{\pi}J_n(x)\log\frac{x}2 +- +\frac1{\pi} +\sum_{k=0}^{n-1} \frac{(n-k-1)!}{k!}\biggl(\frac{x}2\biggr)^{2k-n} +\\ +&\qquad\qquad +- +\frac1{\pi} +\sum_{k=0}^\infty \frac{(-1)^k}{k!\,(n+k)!} +\biggl( +\frac{\Gamma'(n+k+1)}{\Gamma(n+k+1)} ++ +\frac{\Gamma'(k+1)}{\Gamma(k+1)} +\biggr) +\biggl( +\frac{x}2 +\biggr)^{2k+n} +\end{align*} +(siehe auch \cite[p.~200]{buch:specialfunctions}). |