diff options
Diffstat (limited to 'buch/chapters/080-funktionentheorie')
8 files changed, 269 insertions, 33 deletions
diff --git a/buch/chapters/080-funktionentheorie/analytisch.tex b/buch/chapters/080-funktionentheorie/analytisch.tex index 15ca2e4..08196f1 100644 --- a/buch/chapters/080-funktionentheorie/analytisch.tex +++ b/buch/chapters/080-funktionentheorie/analytisch.tex @@ -9,6 +9,9 @@ Holomorphe Funktionen zeichnen sich dadurch aus, dass sie auch immer eine konvergente Reihenentwicklung haben, sie sind also analytisch. +% +% Definition +% \subsection{Definition} \index{Taylor-Reihe}% \index{Exponentialfunktion}% @@ -90,29 +93,29 @@ Damit ist gezeigt, dass alle Ableitungen $f^{(n)}(0)=0$ sind. Die Taylorreihe von $f(x)$ ist daher die Nullfunktion. \end{beispiel} -Die Klasse der Funktionen, die sich durch ihre Taylor-Reihe darstellen -lassen, zeichnet sich also durch besondere Eigenschaften aus, die in -der folgenden Definition zusammengefasst werden. - -\index{analytisch in einem Punkt}% -\index{analytisch}% -\begin{definition} -Eine auf einem offenen Intervall $I\subset \mathbb {R}$ definierte Funktion -$f\colon U\to\mathbb{R}$ heisst {\em analytisch im Punkt $x_0\in I$}, wenn -es eine in einer Umgebung von $x_0$ konvergente Potenzreihe -\[ -\sum_{k=0}^\infty a_k(x-x_0)^k = f(x) -\] -gibt. -Sie heisst {\em analytisch}, wenn sie analytisch ist in jedem Punkt von $I$. -\end{definition} +%Die Klasse der Funktionen, die sich durch ihre Taylor-Reihe darstellen +%lassen, zeichnet sich also durch besondere Eigenschaften aus, die in +%der folgenden Definition zusammengefasst werden. +% +%\index{analytisch in einem Punkt}% +%\index{analytisch}% +%\begin{definition} +%Eine auf einem offenen Intervall $I\subset \mathbb {R}$ definierte Funktion +%$f\colon U\to\mathbb{R}$ heisst {\em analytisch im Punkt $x_0\in I$}, wenn +%es eine in einer Umgebung von $x_0$ konvergente Potenzreihe +%\[ +%\sum_{k=0}^\infty a_k(x-x_0)^k = f(x) +%\] +%gibt. +%Sie heisst {\em analytisch}, wenn sie analytisch ist in jedem Punkt von $I$. +%\end{definition} -Es ist wohlbekannt aus der elementaren Theorie der Potenzreihen, dass +Es ist bekannt aus der elementaren Theorie der Potenzreihen +in Kapitel~\ref{buch:potenzen:section:potenzreihen}, dass eine analytische Funktion beliebig oft differenzierbar ist und dass die Potenzreihe im Punkt $x_0$ die Taylor-Reihe sein muss. -Ausserdem sidn Summen, Differenzen und Produkte von analytischen Funktionen +Ausserdem sind Summen, Differenzen und Produkte von analytischen Funktionen wieder analytisch. - Für eine komplexe Funktion lässt sich der Begriff der analytischen Funktion genau gleich definieren. @@ -131,8 +134,8 @@ Die Verwendung einer offenen Teilmenge $U\subset\mathbb{C}$ ist wesentlich, denn die Funktion $f\colon z\mapsto \overline{z}$ kann in jedem Punkt $x_0\in\mathbb{R}$ der reellen Achse $\mathbb{R}\subset\mathbb{C}$ durch die Potenzreihe -$f(x) = x_0 + (x-x_0)$ dargestellt werden. -Es gibt aber keine Potenzreihe, die $f(z)$ in einer offenen Teilmenge +$f(x) = x_0 + (x-x_0)$ dargestellt werden, +es gibt aber keine Potenzreihe, die $f(z)$ in einer offenen Teilmenge von $\mathbb{C}$ gegen $f(z)=\overline{z}$ konvergiert. % @@ -140,7 +143,40 @@ von $\mathbb{C}$ gegen $f(z)=\overline{z}$ konvergiert. % \subsection{Konvergenzradius \label{buch:funktionentheorie:subsection:konvergenzradius}} +In der Theorie der Potenzreihen, wie sie in Kapitel~\ref{buch:chapter:potenzen} +zusammengefasst wurde, wird auch untersucht, wie gross +eine Umgebung des Punktes $z_0$ ist, in der die Potenzreihe +im Punkt $z_0$ einer analytischen Funktion konvergiert. +Die Definition des Konvergenzradius gilt auch für komplexe Funktionen. -% XXX auf dem Rand des Konvergenzkreises gibt es immer eine Singularität +\begin{satz} +\index{Satz!Konvergenzradius}% +\label{buch:funktionentheorie:satz:konvergenzradius} +Die Potenzreihe +\[ +f(z) = \sum_{k=0}^\infty a_0(z-z_0)^k +\] +ist konvergent auf einem Kreis um $z_0$ mit Radius $\varrho$ und +\[ +\frac{1}{\varrho} += +\limsup_{n\to\infty} \sqrt[k]{|a_k|}. +\] +Falls $a_k\ne 0$ für alle $k$ und der folgende Grenzwert existiert, +dann gilt auch +\[ +\varrho = \lim_{n\to\infty} \biggl| \frac{a_n}{a_{n+1}}\biggr|. +\] +\end{satz} + +\begin{definition} +\label{buch:funktionentheorie:definition:konvergenzradius} +\index{Konvergenzradius}% +Der in Satz~\ref{buch:funktionentheorie:satz:konvergenzradius} +Radius $\varrho$ des Konvergenzkreises heisst {\em Konvergenzradius}. +\end{definition} +Man kann auch zeigen, dass der Konvergenzkreis immer so gross ist, +dass auf seinem Rand ein Wert $z$ liegt, für den die Potenzreihe nicht +konvergiert. diff --git a/buch/chapters/080-funktionentheorie/anwendungen.tex b/buch/chapters/080-funktionentheorie/anwendungen.tex index 4cdf9be..440d2d3 100644 --- a/buch/chapters/080-funktionentheorie/anwendungen.tex +++ b/buch/chapters/080-funktionentheorie/anwendungen.tex @@ -5,6 +5,10 @@ % \section{Anwendungen \label{buch:funktionentheorie:section:anwendungen}} +\rhead{Anwendungen} +In diesem Abschnitt wird die Theorie der komplex differenzierbaren +Funktionen dazu verwendet, einige früher bereits verwendete oder +angedeutete Resultate herzuleiten. \input{chapters/080-funktionentheorie/gammareflektion.tex} \input{chapters/080-funktionentheorie/carlson.tex} diff --git a/buch/chapters/080-funktionentheorie/carlson.tex b/buch/chapters/080-funktionentheorie/carlson.tex index 1923351..41fb5e8 100644 --- a/buch/chapters/080-funktionentheorie/carlson.tex +++ b/buch/chapters/080-funktionentheorie/carlson.tex @@ -24,6 +24,8 @@ beschränkt ist und an den Stellen $z=1,2,3,\dots$ verschwindet. Dann ist $f(z)=0$. \end{satz} +\index{Satz!von Carlson}% +\index{Carlson, Satz von}% \begin{figure} \centering \includegraphics{chapters/080-funktionentheorie/images/carlsonpath.pdf} diff --git a/buch/chapters/080-funktionentheorie/cauchy.tex b/buch/chapters/080-funktionentheorie/cauchy.tex index 21d8dcf..bd07a2f 100644 --- a/buch/chapters/080-funktionentheorie/cauchy.tex +++ b/buch/chapters/080-funktionentheorie/cauchy.tex @@ -6,6 +6,16 @@ \section{Cauchy-Integral \label{buch:funktionentheorie:section:cauchy}} \rhead{Cauchy-Integral} +In Abschnitt~\ref{buch:funktionentheorie:section:holomorph} hat sich +bereits gezeigt, dass komplexe Differenzierbarkeit einer komplexen +Funktion weit mehr Einschränkungen auferlegt als reelle Differenzierbarkeit. +Sowohl der Real- wie auch der Imaginärteil müssenharmonische Funktionen +sein. +In diesem Abschnitt wird die Cauchy-In\-te\-gral\-formel etabliert, die +sogar zeigt, dass eine komplex differenzierbare Funktion bereits durch +die Werte auf dem Rand eines einfach zusammenhängenden Gebietes +gegeben ist, beliebig oft differenzierbar ist und ausserdem immer +analytisch ist. % % Wegintegrale und die Cauchy-Formel @@ -125,6 +135,7 @@ Wie Wahl der Parametrisierung der Kurve hat keinen Einfluss auf den Wert des Wegintegrals. \begin{satz} +\index{Satz!Kurvenparametrisierung}% Seien $\gamma_1(t), t\in[a,b],$ und $\gamma_2(s),s\in[c,d]$ verschiedene Parametrisierungen \index{Parametrisierung}% diff --git a/buch/chapters/080-funktionentheorie/chapter.tex b/buch/chapters/080-funktionentheorie/chapter.tex index b7b5325..aa1041a 100644 --- a/buch/chapters/080-funktionentheorie/chapter.tex +++ b/buch/chapters/080-funktionentheorie/chapter.tex @@ -37,11 +37,6 @@ auf der rellen Achse hinaus fortsetzen. \input{chapters/080-funktionentheorie/fortsetzung.tex} \input{chapters/080-funktionentheorie/anwendungen.tex} -\section{TODO} -\begin{itemize} -\item Aurgument-Prinzip -\end{itemize} - \section*{Übungsaufgaben} \rhead{Übungsaufgaben} \aufgabetoplevel{chapters/080-funktionentheorie/uebungsaufgaben} diff --git a/buch/chapters/080-funktionentheorie/gammareflektion.tex b/buch/chapters/080-funktionentheorie/gammareflektion.tex index 537fd96..4a8f41f 100644 --- a/buch/chapters/080-funktionentheorie/gammareflektion.tex +++ b/buch/chapters/080-funktionentheorie/gammareflektion.tex @@ -12,12 +12,15 @@ die durch Spiegelung an der Geraden $\operatorname{Re}x=\frac12$ auseinander hervorgehen, und einem speziellen Beta-Integral her. \begin{satz} +\index{Satz!Spiegelungsformel für $\Gamma(x)$}% +\label{buch:funktionentheorie:satz:spiegelungsformel} Für $0<x<1$ gilt \begin{equation} \Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin\pi x}. \end{equation} +\index{Gamma-Funktion!Spiegelungsformel}% \end{satz} \begin{figure} diff --git a/buch/chapters/080-funktionentheorie/holomorph.tex b/buch/chapters/080-funktionentheorie/holomorph.tex index c87b083..b2bacae 100644 --- a/buch/chapters/080-funktionentheorie/holomorph.tex +++ b/buch/chapters/080-funktionentheorie/holomorph.tex @@ -83,6 +83,7 @@ Der Term $x-x_0$ und die Gleichung \eqref{komplex:abldef} sind aber auch für komplexe Argument sinnvoll, wir definieren daher \begin{definition} +\label{buch:funktionentheorie:definition:differenzierbar} Die komplexe Funktion $f(z)$ heisst im Punkt $z_0$ komplex differenzierbar und hat die komplexe Ableitung $f'(z_0)\in\mathbb C$, wenn \index{komplex differenzierbar}% @@ -107,10 +108,10 @@ Differenzenquotienten finden: &= \frac{z^n-z_0^n}{z-z_0} = -\frac{(z-z_0)(z^{n-1}+z^{n-2}z_0+z^{n-3}z_0^2+\dots+z^{n-1})}{z-z_0} +\frac{(z-z_0)(z^{n-1}+z^{n-2}z_0+z^{n-3}z_0^2+\dots+z_0^{n-1})}{z-z_0} \\ &= -\underbrace{z^{n-1}+z^{n-2}z_0+z^{n-3}z_0^2+\dots+z^{n-1} +\underbrace{z^{n-1}+z^{n-2}z_0+z^{n-3}z_0^2+\dots+z_0^{n-1} }_{\displaystyle \text{$n$ Summanden}}. \end{align*} Lassen wir jetzt $z$ gegen $z_0$ gehen, wird die rechte Seite @@ -191,6 +192,7 @@ Dies ist nur möglich, wenn Real- und Imaginärteile übereinstimmen. Es folgt also \begin{satz} +\index{Satz!Cauchy-Riemann Differentialgleichungen}% \label{komplex:satz:cauchy-riemann} Real- und Imaginärteil $u(x,y)$ und $v(x,y)$ einer komplex differenzierbaren Funktion $f(z)$ mit $f(x+iy)=u(x,y)+iv(x,y)$ @@ -258,11 +260,12 @@ Der Operator \frac{\partial^2}{\partial y^2} \] heisst der {\em Laplace-Operator} in zwei Dimensionen. - \index{Laplace-Operator}% +\index{Operator!Laplace-}% \end{definition} \begin{definition} +\label{buch:funktionentheorie:definition:harmonisch} Eine Funktion $h(x,y)$ von zwei Variablen heisst {\em harmonisch}, wenn sie die Gleichung \[ diff --git a/buch/chapters/080-funktionentheorie/singularitaeten.tex b/buch/chapters/080-funktionentheorie/singularitaeten.tex index 71d1844..2a5c62c 100644 --- a/buch/chapters/080-funktionentheorie/singularitaeten.tex +++ b/buch/chapters/080-funktionentheorie/singularitaeten.tex @@ -5,6 +5,9 @@ % \newcommand*\sk{\vcenter{\hbox{\includegraphics[scale=0.8]{chapters/080-funktionentheorie/images/operator-1.pdf}}}} +% +% Löesung linearer Differentialgleichunge mit Singularitäten +% \subsection{Lösungen von linearen Differentialgleichungen mit Singularitäten \label{buch:funktionentheorie:subsection:dglsing}} Die Potenzreihenmethode hat ermöglicht, mindestens eine Lösung gewisser @@ -19,6 +22,9 @@ Ziel dieses Abschnitts ist zu zeigen, warum dies nicht möglich war und wie diese Schwierigkeit mit Hilfe der analytischen Fortsetzung überwunden werden kann. +% +% Differentialgleichungen mit Singularitäten +% \subsubsection{Differentialgleichungen mit Singularitäten} Mit der Besselschen Differentialgleichung~\eqref{buch:differentialgleichungen:eqn:bessel} @@ -76,6 +82,8 @@ in einer Umgebung von $x=0$ wieder nicht. Die Besselsche Differentialgleichung hat auch nicht die Form $y''+p(x)xy'+q(x)=0$, die der Theorie der Indexgleichung zugrunde lag. +\index{Besselsche Differentialgleichung}% +\index{Differentialgleichung!Besselsche}% Daher kann es auch keine Garantie geben, dass die Methode der verallgemeinerten Potenzreihen zwei linear unabhängige Lösungen liefern kann. @@ -93,11 +101,15 @@ Klasse von Singularitäten beschreiben, aber es ist nicht klar, welche weiteren Arten von Singularitäten berücksichtigt werden sollten. Dies soll im Folgenden geklärt werden. +% +% Der Lösungsraum einer Differentialgleichung zweiter Ordnung +% \subsubsection{Der Lösungsraum einer Differentialgleichung zweiter Ordnung} Eine Differentialgleichung $n$-ter Ordnung hat lokal einen $n$-dimensionalen Vektorraum als Lösungsraum. \begin{definition} +\label{buch:funktionentheorie:singularitaeten:def:loesungsraum} Sei \begin{equation} \sum_{k=0}^n a_k(x) y^{(n)}(x) = 0 @@ -124,8 +136,13 @@ der Lösungsraum der Differentialgleichung \eqref{buch:funktionentheorie:singularitaeten:eqn:defdgl}. Wenn der Punkt $x_0$ aus dem Kontext klar ist, kann er auch weggelassen werden: $\mathbb{L}_{x_0}=\mathbb{L}$. +\index{Lösungsraum einer Differentialgleichung}% +\index{Differentialgleichung!Lösungsraum}% \end{definition} +% +% Analytische Fortsetzung auf dem Weg um 0 +% \subsubsection{Analytische Fortsetzung auf einem Weg um $0$} Die betrachteten Differentialgleichungen haben holomorphe Koeffizienten, Lösungen der Differentialgleichung lassen sich @@ -159,11 +176,15 @@ Das Studium dieser analytischen Fortsetzung dürfte daher zusätzliche Informationen über die Lösung hervorbringen. \begin{definition} +\label{buch:funktionentheorie:def:fortsetzungsoperator} +\index{Fortsetzungsoperator}% Der {\em Fortsetzungsoperator} $\sk$ ist der lineare Operator, der eine in einem Punkt $x\in\mathbb{R}^+$ analytische Funktion $f(x)$ entlang eines geschlossenen Weges fortsetzt, der $0$ im Gegenuhrzeigersinn umläuft. Die Einschränkung der analytischen Fortsetzung auf $\mathbb{R}^+$ wird mit $\sk f(x)$ bezeichnet. +\index{analytische Fortsetzung}% +\index{Fortsetzung, analytisch}% \end{definition} Die obengenannten Beispiele lassen sich mit dem Operator $\sk$ als @@ -186,6 +207,9 @@ e^{2\pi i\varrho} z^\varrho \] schreiben. +% +% Rechenregeln für die analytische Fortsetzung +% \subsubsection{Rechenregeln für die analytische Fortsetzung} Der Operator $\sk$ ist ein Algebrahomomorphismus, d.~h.~für zwei analytische Funktionen $f$ und $g$ gilt @@ -215,7 +239,9 @@ vertauscht, dass also \sk(f^{(n)}). \] - +% +% Analytische Fortsetzung von Lösungen einer Differentialgleichung +% \subsubsection{Analytische Fortsetzung von Lösungen einer Differentialgleichung} Wir untersuchen jetzt die Wirkung des Operators $\sk$ auf den Lösungsraum $\mathbb{L}$ einer Differentialgleichung mit @@ -258,7 +284,9 @@ geeigneten Basis in besonders einfache Form gebracht. Wir führen diese Diskussion im folgenden nur für eine Differentialgleichung zweiter Ordnung $n=2$. - +% +% Fall A diagonalisierbar +% \subsubsection{Fall $A$ diagonalisierbar: verallgemeinerte Potenzreihen} In diesem Fall kann man die Lösungsfunktionen $w_1$ und $w_2$ so wählen, dass die Matrix @@ -326,6 +354,9 @@ Falls der Operator $\sk$ also diagonalisierbar ist, dann gibt es zwei linear unabhängige Lösungen der Differentialgleichung in der Form einer verallgemeinerten Potenzreihe. +% +% Fall $A$ nicht diagonalisierbar +% \subsubsection{Fall $A$ nicht diagonalisierbar: logarithmische Lösungen} Falls die Matrix $A$ nicht diagonalisierbar ist, hat sie nur einen Eigenwert $\lambda$ und kann durch geeignete Wahl einer Basis in @@ -421,7 +452,158 @@ in die ursprüngliche Differentialgleichung ein, verschwindet der $\log(z)$-Term und für die verbleibenden Koeffizienten kann die bekannte Methode des Koeffizientenvergleichs verwendet werden. -\subsubsection{Bessel-Funktionen zweiter Art} +% +% Bessel-Funktionen zweiter Art +% +\subsubsection{Bessel-Funktionen zweiter Art +\label{buch:funktionentheorie:subsubsection:bessel2art}} +Im Abschnitt~\ref{buch:differentialgleichungen:subsection:bessel1steart} +waren wir nicht in der Lage, für ganzahlige $\alpha$ zwei linear unabhängige +Lösungen der Besselschen Differentialgleichung zu finden. +Die vorangegangenen Ausführungen erklären dies: der Ansatz als +verallgemeinerte Potenzreihe konnte die Singularität nicht wiedergeben. +Inzwischen wissen wir, dass wir nach einer Lösung mit einer logarithmischen +Singularität suchen müssen. +Um dies nachzuprüfen, setzen wir den Ansatz +\[ +y(x) = \log(x) J_n(x) + z(x) +\] +in die Besselsche Differentialgleichung ein. +Dazu benötigen wir erst die Ableitungen von $y(x)$: +\begin{align*} +y'(x) +&= +\frac{1}{x} J_n(x) + \log(x)J_n'(x) + z'(x) +\\ +xy'(x) +&= +J_n(x) + x\log(x)J_n'(x) + xz'(x) +\\ +y''(x) +&= +-\frac{1}{x^2} J_n(x) ++\frac2x J_n'(x) ++\log(x) J_n''(x) ++z''(x) +\\ +x^2y''(x) +&= +-J_n(x) + 2xJ'_n(x)+x^2\log(x)J_n''(x) + x^2z''(x). +\end{align*} +Die Wirkung des Bessel-Operators auf $y(x)$ ist +\begin{align*} +By +&= +x^2y''+xy'+x^2y +\\ +&= +\log(x) \bigl( +\underbrace{ +x^2J_n''(x) ++xJ_n'(x) ++x^2J_n(x) +}_{\displaystyle = n^2J_n(x)} +\bigr) +-J_n(x)+2xJ_n'(x) ++J_n(x) ++ +xz'(x) ++ +x^2z''(x) +\\ +&= +n^2 \log(x)J_n(x) ++ +2xJ_n(x) ++ +x^2z(x) ++ +xz'(x) ++ +x^2z''(x) +\end{align*} +Damit $y(x)$ eine Eigenfunktion zum Eigenwert $n^2$ wird, muss +dies mit $n^2y(x)$ übereinstimmen, also +\begin{align*} +n^2 \log(x)J_n(x) ++ +2xJ_n(x) ++ +x^2z(x) ++ +xz'(x) ++ +x^2z''(x) +&= +n^2\log(x)J_n(x) + n^2z(x). +\intertext{Die logarithmischen Terme heben sich weg und es bleibt} +x^2z''(x) ++ +xz'(x) ++ +(x^2-n^2)z(x) +&= +-2xJ_n(x). +\end{align*} +Eine Lösung für $z(x)$ kann mit Hilfe eines Potenzreihenansatzes +gefunden werden. +Sie ist aber nur bis auf einen Faktor festgelegt. +Tatsächlich kann man aber auch eine direkte Definition geben. + +\begin{definition} +Die Bessel-Funktionen zweiter Art der Ordnung $\alpha$ sind die Funktionen +\begin{equation} +Y_\alpha(x) += +\frac{J_\alpha(x) \cos \alpha\pi - J_{-\alpha}(x)}{\sin \alpha\pi }. +\label{buch:funktionentheorie:bessel:2teart} +\end{equation} +Für ganzzahliges $\alpha$ verschwindet der Nenner in +\eqref{buch:funktionentheorie:bessel:2teart}, +daher ist +\[ +Y_n(x) += +\lim_{\alpha\to n} Y_{\alpha}(x) += +\frac{1}{\pi}\biggl( +\frac{d}{d\alpha}J_{\alpha}(x)\bigg|_{\alpha=n} ++ +(-1)^n +\frac{d}{d\alpha}J_{\alpha}(x)\bigg|_{\alpha=-n} +\biggr). +\] +\end{definition} +Die Funktionen $Y_\alpha(x)$ sind Linearkombinationen der Lösungen +$J_\alpha(x)$ und $J_{-\alpha}(x)$ und damit automatisch auch Lösungen +der Besselschen Differentialgleichung. +Dies gilt auch für den Grenzwert im Falle ganzahliger Ordnung $\alpha$. +Da $J_{\alpha}(x)$ durch eine Reihenentwicklung definiert ist, kann man +diese Termweise nach $\alpha$ ableiten und damit auch eine +Reihendarstellung von $Y_n(x)$ finden. +Nach einiger Rechnung findet man: +\begin{align*} +Y_n(x) +&= +\frac{2}{\pi}J_n(x)\log\frac{x}2 +- +\frac1{\pi} +\sum_{k=0}^{n-1} \frac{(n-k-1)!}{k!}\biggl(\frac{x}2\biggr)^{2k-n} +\\ +&\qquad\qquad +- +\frac1{\pi} +\sum_{k=0}^\infty \frac{(-1)^k}{k!\,(n+k)!} +\biggl( +\frac{\Gamma'(n+k+1)}{\Gamma(n+k+1)} ++ +\frac{\Gamma'(k+1)}{\Gamma(k+1)} +\biggr) +\biggl( +\frac{x}2 +\biggr)^{2k+n} +\end{align*} +(siehe auch \cite[p.~200]{buch:specialfunctions}). |