aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/110-elliptisch/dglsol.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/110-elliptisch/dglsol.tex')
-rw-r--r--buch/chapters/110-elliptisch/dglsol.tex232
1 files changed, 225 insertions, 7 deletions
diff --git a/buch/chapters/110-elliptisch/dglsol.tex b/buch/chapters/110-elliptisch/dglsol.tex
index 7eaab38..c5b3a5c 100644
--- a/buch/chapters/110-elliptisch/dglsol.tex
+++ b/buch/chapters/110-elliptisch/dglsol.tex
@@ -228,8 +228,10 @@ Nach Multiplikation mit $\operatorname{qp}(u,k)^4$ erhält man den
folgenden Satz.
\begin{satz}
+\index{Satz!Differentialgleichung von $1/\operatorname{pq}(u,k)$}%
Wenn die Jacobische elliptische Funktion $\operatorname{pq}(u,k)$
-der Differentialgleichung genügt, dann genügt der Kehrwert
+der Differentialgleichung~\eqref{buch:elliptisch:eqn:1storderdglell}
+genügt, dann genügt der Kehrwert
$\operatorname{qp}(u,k) = 1/\operatorname{pq}(u,k)$ der Differentialgleichung
\begin{equation}
(\operatorname{qp}'(u,k))^2
@@ -276,8 +278,8 @@ vertauscht worden sind.
% Differentialgleichung zweiter Ordnung
%
\subsubsection{Differentialgleichung zweiter Ordnung}
-Leitet die Differentialgleichung~\eqref{buch:elliptisch:eqn:1storderdglell}
-man dies nochmals nach $u$ ab, erhält man die Differentialgleichung
+Leitet man die Differentialgleichung~\eqref{buch:elliptisch:eqn:1storderdglell}
+nochmals nach $u$ ab, erhält man die Differentialgleichung
\[
2\operatorname{pq}''(u,k)\operatorname{pq}'(u,k)
=
@@ -339,19 +341,231 @@ y(u) = F^{-1}(u+C).
Die Jacobischen elliptischen Funktionen sind daher inverse Funktionen
der unvollständigen elliptischen Integrale.
+\begin{beispiel}
+Die Differentialgleichung der Funktion $y=\operatorname{sn}(u,k)$ ist
+\[
+(y')^2
+=
+(1-y^2)(1-k^2y^2).
+\]
+Aus \eqref{buch:elliptisch:eqn:yintegral} folgt daher, dass
+\[
+u+C
+=
+\int\frac{dy}{(1-y^2)(1-k^2y^2)}.
+\]
+Das Integral ist das unvollständige elliptische Integral erster Art.
+Mit der Wahl der Konstanten $C$ so, dass $y(0)=0$ ist, ist
+$y(u)=\operatorname{sn}(u,k)$ daher die Umkehrfunktion von
+$y\mapsto F(y,k)=u$.
+\end{beispiel}
+
+%
+% Numerische Berechnung mit dem arithmetisch-geometrischen Mittel
+%
+\subsubsection{Numerische Berechnung mit dem arithmetisch-geometrischen Mittel
+\label{buch:elliptisch:jacobi:agm}}
+\begin{table}
+\centering
+\begin{tikzpicture}[>=latex,thick]
+
+\begin{scope}[xshift=-2.4cm,yshift=1.2cm]
+\fill[color=red!20]
+ (-1.0,0) -- (-1.0,-2.1) -- (-1.8,-2.1) -- (0,-3.0)
+ -- (1.8,-2.1) -- (1.0,-2.1) -- (1.0,0) -- cycle;
+\node[color=white] at (0,-1.2) [scale=7] {\sf 1};
+\end{scope}
+
+\begin{scope}[xshift=2.9cm,yshift=-1.8cm]
+\fill[color=blue!20]
+ (0.8,0) -- (0.8,2.1) -- (1.4,2.1) -- (0,3.0) -- (-1.4,2.1)
+ -- (-0.8,2.1) -- (-0.8,0) -- cycle;
+\node[color=white] at (0,1.2) [scale=7] {\sf 2};
+\end{scope}
+
+\node at (0,0) {
+\begin{tabular}{|>{$}c<{$}|>{$}c<{$}>{$}c<{$}|>{$}c<{$}>{$}l<{$}|}
+\hline
+n & a_n & b_n & x_n &
+\mathstrut\text{\vrule height12pt depth6pt width0pt}\\
+\hline
+0 & 1.0000000000000000 & 0.4358898943540673 & 0.5422823228691580 & = \operatorname{sn}(u,k)%
+\mathstrut\text{\vrule height12pt depth0pt width0pt}\\
+1 & 0.7179449471770336 & 0.6602195804079634 & 0.4157689781689663 & \mathstrut\\
+2 & 0.6890822637924985 & 0.6884775317911533 & 0.4017521410983242 & \mathstrut\\
+3 & 0.6887798977918259 & 0.6887798314243237 & 0.4016042867931862 & \mathstrut\\
+4 & 0.6887798646080748 & 0.6887798646080740 & 0.4016042705654757 & \mathstrut\\
+5 & 0.6887798646080744 & 0.6887798646080744 & 0.4016042705654755 & \mathstrut\\
+6 & & & 0.4016042705654755 & = \sin(a_5u)
+\mathstrut\text{\vrule height0pt depth6pt width0pt}\\
+\hline
+\end{tabular}
+};
+\end{tikzpicture}
+\caption{Berechnung von $\operatorname{sn}(u,k)$ für $u=0.6$ und $k=0.$2
+mit Hilfe des arithmetisch-geo\-me\-tri\-schen Mittels.
+In der ersten Phase des Algorithmus (rot) wird die Folge der arithmetischen
+\index{Algorithmus!arithmetisch-geometrisches Mittel}%
+und geometrischen Mittel berechnet, in der zweiten Phase werden die
+Approximationen von $x_0=\operatorname{sn}(u,k)$.
+Bei $n=5$ erreicht die Iteration des arithmetisch-geometrischen Mittels
+Maschinengenauigkeit, was sich auch darin äussert, dass sich $x_5$ und
+$x_6=\sin(a_5u)$ nicht unterscheiden.
+\label{buch:elliptisch:agm:table:snberechnung}}
+\end{table}
+In Abschnitt~\ref{buch:elliptisch:subsection:agm} auf
+Seite~\pageref{buch:elliptisch:subsubection:berechnung-fxk-agm}
+wurde erklärt, wie das unvollständige elliptische Integral $F(x,k)$ mit
+Hilfe des arithmetisch-geometrischen Mittels berechnet werden kann.
+\index{Algorithmus!arithmetisch-geometrisches Mittel}%
+\index{arithmetisch-geometrisches Mittel!Algorithmus}%
+Da $\operatorname{sn}^{-1}(x,k) = F(x,k)$ die Umkehrfunktion ist, kann
+man den Algorithmus auch zur Berechnung von $\operatorname{sn}(u,k)$
+verwenden.
+Dazu geht man wie folgt vor:
+\begin{enumerate}
+\item
+$k'=\sqrt{1-k^2}$.
+\item
+Berechne die Folgen des arithmetisch-geometrischen Mittels
+$a_n$ und $b_n$ mit $a_0=1$ und $b_0=k'$, bis zum Folgenindex $N$,
+bei dem ausreichende Konvergenz eintegreten ist.
+\item
+Setze $x_N = \sin(a_N \cdot u)$.
+\item
+Berechnet für absteigende $n=N-1,N-2,\dots$ die Folge $x_n$ mit Hilfe
+der Rekursionsformel
+\begin{equation}
+x_{n}
+=
+\frac{2a_nx_{n+1}}{a_n+b_n+(a_n-b_n)x_{n+1}^2},
+\label{buch:elliptisch:agm:xnrek}
+\end{equation}
+die aus \eqref{buch:elliptisch:agm:subst}
+durch die Substitution $x_n = \sin t_n$ entsteht.
+\item
+Setze $\operatorname{sn}(u,k) = x_0$.
+\end{enumerate}
+Da die Formel \eqref{buch:elliptisch:agm:xnrek} nicht unter den
+numerischen Stabilitätsproblemen leidet, die früher auf
+Seite~\pageref{buch:elliptisch:agm:ellintegral-stabilitaet}
+diskutiert wurden, ist die Berechnung stabil und sehr schnell.
+Tabelle~\ref{buch:elliptisch:agm:table:snberechnung}
+zeigt die Berechnung am Beispiel $u=0.6$ und $k=0.2$.
+
+%
+% Pole und Nullstellen der Jacobischen elliptischen Funktionen
+%
+\subsubsection{Pole und Nullstellen der Jacobischen elliptischen Funktionen}
+\begin{figure}
+\centering
+\includegraphics{chapters/110-elliptisch/images/ellpolnul.pdf}
+\caption{Werte der grundlegenden Jacobischen elliptischen Funktionen
+$\operatorname{sn}(u,k)$,
+$\operatorname{cn}(u,k)$
+und
+$\operatorname{dn}(u,k)$
+in den Ecken des Rechtecks mit Ecken $(0,0)$ und $(K,K+iK')$.
+Links der Definitionsbereich, rechts die Werte der drei Funktionen.
+Pole sind mit einem Kreuz ($\times$) bezeichnet, Nullstellen mit einem
+Kreis ($\ocircle$).
+\label{buch:elliptisch:fig:ellpolnul}}
+\end{figure}
+\begin{figure}
+\centering
+\includegraphics{chapters/110-elliptisch/images/ellall.pdf}
+\caption{Pole und Nullstellen aller Jacobischen elliptischen Funktionen
+mit den gleichen Darstellungskonventionen wie in
+Abbildung~\ref{buch:elliptisch:fig:ellpolnul}
+\label{buch:elliptisch:fig:ellall}}
+\end{figure}
+\begin{figure}
+\centering
+\includegraphics{chapters/110-elliptisch/images/ellselection.pdf}
+\caption{Auswahl einer Jacobischen elliptischen Funktion mit bestimmten
+Nullstellen und Polen.
+Nullstellen und Pole können in jeder der vier Ecken des fundamentalen
+Rechtecks (gelb, oberer rechter Viertel des Periodenrechtecks) liegen.
+Der erste Buchstabe des Namens der gesuchten Funktion ist der Buchstabe
+der Ecke der Nullstelle, der zweite Buchstabe ist der Buchstabe der
+Ecke des Poles.
+Im Beispiel die Funktion $\operatorname{cd}(u,k)$, welche eine
+Nullstelle in $K$ hat und einen Pol in $K+iK'$.
+\label{buch:elliptisch:fig:selectell}}
+\end{figure}
+Für die Funktion $y=\operatorname{sn}(u,k)$ erfüllt die Differentialgleichung
+\[
+\frac{dy}{du}
+=
+\sqrt{(1-y^2)(1-k^2y^2)},
+\]
+welche mit dem unbestimmten Integral
+\begin{equation}
+u + C = \int\frac{dy}{\sqrt{(1-y^2)(1-k^2y^2)}}
+\label{buch:elliptisch:eqn:uyintegral}
+\end{equation}
+gelöst werden kann.
+Der Wertebereich des Integrals in \eqref{buch:elliptisch:eqn:uyintegral}
+wurde bereits in
+Abschnitt~\ref{buch:elliptisch:subsection:unvollstintegral}
+auf Seite~\pageref{buch:elliptische:subsubsection:wertebereich}
+diskutiert.
+Daraus können jetzt Nullstellen und Pole der Funktion $\operatorname{sn}(u,k)$
+und mit Hilfe von Tabelle~\ref{buch:elliptisch:fig:jacobi-relationen}
+auch für $\operatorname{cn}(u,k)$ und $\operatorname{dn}(u,k)$
+abgelesen werden:
+\begin{equation}
+\begin{aligned}
+\operatorname{sn}(0,k)&=0
+&&\qquad&
+\operatorname{cn}(0,k)&=1
+&&\qquad&
+\operatorname{dn}(0,k)&=1
+\\
+\operatorname{sn}(iK',k)&=\infty
+&&\qquad&
+\operatorname{cn}(iK',k)&=\infty
+&&\qquad&
+\operatorname{dn}(iK',k)&=\infty
+\\
+\operatorname{sn}(K,k)&=1
+&&\qquad&
+\operatorname{cn}(K,k)&=0
+&&\qquad&
+\operatorname{dn}(K,k)&=k'
+\\
+\operatorname{sn}(K+iK',k)&=\frac{1}{k}
+&&\qquad&
+\operatorname{cn}(K+iK',k)&=\frac{k'}{ik}
+&&\qquad&
+\operatorname{dn}(K+iK',k)&=0
+\end{aligned}
+\label{buch:elliptische:eqn:eckwerte}
+\end{equation}
+Abbildung~\ref{buch:elliptisch:fig:ellpolnul} zeigt diese Werte
+an einer schematischen Darstellung des Definitionsbereiches auf.
+Daraus lassen sich jetzt auch die Werte der abgeleiteten Jacobischen
+elliptischen Funktionen ablesen, Pole und Nullstellen sind in
+Abbildung~\ref{buch:elliptisch:fig:ellall}
+zusammengestellt.
+
+
+
+
%
% Differentialgleichung des anharmonischen Oszillators
%
\subsubsection{Differentialgleichung des anharmonischen Oszillators}
Wir möchten die nichtlineare Differentialgleichung
+\index{Differentialgleichung!das anharmonischen Oszillators}%
\begin{equation}
\biggl(
\frac{dx}{dt}
\biggr)^2
=
Ax^4+Bx^2 + C
-\label{buch:elliptisch:eqn:allgdgl}
+\label{buch:elliptisch:eqn:anhdgl}
\end{equation}
mit Hilfe elliptischer Funktionen lösen.
Wir nehmen also an, dass die gesuchte Lösung eine Funktion der Form
@@ -368,7 +582,7 @@ a\operatorname{zn}'(bt,k).
\]
Indem wir diesen Lösungsansatz in die
-Differentialgleichung~\eqref{buch:elliptisch:eqn:allgdgl}
+Differentialgleichung~\eqref{buch:elliptisch:eqn:anhdgl}
einsetzen, erhalten wir
\begin{equation}
a^2b^2 \operatorname{zn}'(bt,k)^2
@@ -478,13 +692,13 @@ Da alle Parameter im
Lösungsansatz~\eqref{buch:elliptisch:eqn:loesungsansatz} bereits
festgelegt sind stellt sich die Frage, woher man einen weiteren
Parameter nehmen kann, mit dem Anfangsbedingungen erfüllen kann.
-Die Differentialgleichung~\eqref{buch:elliptisch:eqn:allgdgl} ist
+Die Differentialgleichung~\eqref{buch:elliptisch:eqn:anhdgl} ist
autonom, die Koeffizienten der rechten Seite der Differentialgleichung
sind nicht von der Zeit abhängig.
Damit ist eine zeitverschobene Funktion $x(t-t_0)$ ebenfalls eine
Lösung der Differentialgleichung.
Die allgmeine Lösung der
-Differentialgleichung~\eqref{buch:elliptisch:eqn:allgdgl} hat
+Differentialgleichung~\eqref{buch:elliptisch:eqn:anhdgl} hat
also die Form
\[
x(t) = a\operatorname{zn}(b(t-t_0)),
@@ -492,3 +706,7 @@ x(t) = a\operatorname{zn}(b(t-t_0)),
wobei die Funktion $\operatorname{zn}(u,k)$ auf Grund der Vorzeichen
von $A$, $B$ und $C$ gewählt werden müssen.
+Die Übungsaufgaben~\ref{buch:elliptisch:aufgabe:1} ist als
+Lernaufgabe konzipiert, mit der die Lösung der Differentialgleichung
+des harmonischen Oszillators beispielhaft durchgearbeitet
+werden kann.