aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/110-elliptisch/lemniskate.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/110-elliptisch/lemniskate.tex')
-rw-r--r--buch/chapters/110-elliptisch/lemniskate.tex474
1 files changed, 377 insertions, 97 deletions
diff --git a/buch/chapters/110-elliptisch/lemniskate.tex b/buch/chapters/110-elliptisch/lemniskate.tex
index f750a82..04c137d 100644
--- a/buch/chapters/110-elliptisch/lemniskate.tex
+++ b/buch/chapters/110-elliptisch/lemniskate.tex
@@ -12,14 +12,11 @@ veröffentlich hat.
In diesem Abschnitt soll die Verbindung zu den Jacobischen
elliptischen Funktionen hergestellt werden.
+%
+% Lemniskate
+%
\subsection{Lemniskate
\label{buch:gemotrie:subsection:lemniskate}}
-\begin{figure}
-\centering
-\includegraphics{chapters/110-elliptisch/images/lemniskate.pdf}
-\caption{Bogenlänge und Radius der Lemniskate von Bernoulli.
-\label{buch:elliptisch:fig:lemniskate}}
-\end{figure}
Die {\em Lemniskate von Bernoulli} ist die Kurve vierten Grades
mit der Gleichung
\index{Lemniskate von Bernoulli}%
@@ -29,19 +26,26 @@ mit der Gleichung
\end{equation}
Sie ist in Abbildung~\ref{buch:elliptisch:fig:lemniskate}
dargestellt.
-Die beiden Scheitel der Lemniskate befinden sich bei $X_s=\pm a\sqrt{2}$.
+Der Fall $a=1/\!\sqrt{2}$ ist eine Kurve mit der Gleichung
+\[
+(x^2+y^2)^2 = x^2-y^2,
+\]
+wir nennen sie die {\em Standard-Lemniskate}.
+
+\subsubsection{Scheitelpunkte}
+Die beiden Scheitel der Lemniskate befinden sich bei $X_s=\pm a\!\sqrt{2}$.
Dividiert man die Gleichung der Lemniskate durch $X_s^2=4a^4$ entsteht
\begin{equation}
\biggl(
-\biggl(\frac{X}{a\sqrt{2}}\biggr)^2
+\biggl(\frac{X}{a\!\sqrt{2}}\biggr)^2
+
-\biggl(\frac{Y}{a\sqrt{2}}\biggr)^2
+\biggl(\frac{Y}{a\!\sqrt{2}}\biggr)^2
\biggr)^2
=
2\frac{a^2}{2a^2}\biggl(
-\biggl(\frac{X}{a\sqrt{2}}\biggr)^2
+\biggl(\frac{X}{a\!\sqrt{2}}\biggr)^2
-
-\biggl(\frac{Y}{a\sqrt{2}}\biggr)^2
+\biggl(\frac{Y}{a\!\sqrt{2}}\biggr)^2
\biggr).
\qquad
\Leftrightarrow
@@ -49,11 +53,19 @@ Dividiert man die Gleichung der Lemniskate durch $X_s^2=4a^4$ entsteht
(x^2+y^2)^2 = x^2-y^2,
\label{buch:elliptisch:eqn:lemniskatenormiert}
\end{equation}
-wobei wir $x=X/a\sqrt{2}$ und $y=Y/a\sqrt{2}$ gesetzt haben.
-In dieser Normierung liegen die Scheitel bei $\pm 1$.
+wobei wir $x=X/a\!\sqrt{2}$ und $y=Y/a\!\sqrt{2}$ gesetzt haben.
+In dieser Normierung, der Standard-Lemniskaten, liegen die Scheitel
+bei $\pm 1$.
Dies ist die Skalierung, die für die Definition des lemniskatischen
Sinus und Kosinus verwendet werden soll.
+\begin{figure}
+\centering
+\includegraphics{chapters/110-elliptisch/images/lemniskate.pdf}
+\caption{Bogenlänge und Radius der Lemniskate von Bernoulli.
+\label{buch:elliptisch:fig:lemniskate}}
+\end{figure}
+\subsubsection{Polarkoordinaten}
In Polarkoordinaten $x=r\cos\varphi$ und $y=r\sin\varphi$
gilt nach Einsetzen in \eqref{buch:elliptisch:eqn:lemniskatenormiert}
\begin{equation}
@@ -71,12 +83,180 @@ Sie gilt für Winkel $\varphi\in[-\frac{\pi}4,\frac{\pi}4]$ für das
rechte Blatt und $\varphi\in[\frac{3\pi}4,\frac{5\pi}4]$ für das linke
Blatt der Lemniskate.
+%
+% Schnitt eines Kegels mit einem Paraboloid
+%
+\subsubsection{Schnitt eines Kegels mit einem Paraboloid}
+\begin{figure}
+\center
+\includegraphics{chapters/110-elliptisch/images/kegelpara.pdf}
+\caption{Leminiskate (rot) als Projektion (gelb) der Schnittkurve (pink)
+eines geraden
+Kreiskegels (grün) mit einem Rotationsparaboloid (hellblau).
+\label{buch:elliptisch:lemniskate:kegelpara}}
+\end{figure}%
+\index{Kegel}%
+\index{Paraboloid}%
+Schreibt man in der Gleichung~\eqref{buch:elliptisch:eqn:lemniskate}
+für die Klammer auf der rechten Seite $Z^2 = X^2 - Y^2$, dann wird die
+Lemniskate die Projektion in die $X$-$Y$-Ebene der Schnittkurve der Flächen,
+die durch die Gleichungen
+\begin{equation}
+X^2-Y^2 = Z^2
+\qquad\text{und}\qquad
+(X^2+Y^2) = R^2 = \!\sqrt{2}aZ
+\label{buch:elliptisch:eqn:kegelparabolschnitt}
+\end{equation}
+beschrieben wird.
+Die linke Gleichung in
+\eqref{buch:elliptisch:eqn:kegelparabolschnitt}
+beschreibt einen geraden Kreiskegel, die rechte ist ein Rotationsparaboloid.
+Die Schnittkurve ist in Abbildung~\ref{buch:elliptisch:lemniskate:kegelpara}
+dargestellt.
+
+\subsubsection{Schnitt eines Torus mit einer Ebene}
+\begin{figure}
+\centering
+\includegraphics{chapters/110-elliptisch/images/torusschnitt.pdf}
+\caption{Die Schnittkurve (rot) eines Torus (grün)
+mit einer zur Torusachse parallelen Ebene (blau),
+die den inneren Äquator des Torus berührt, ist eine Lemniskate.
+\label{buch:elliptisch:lemniskate:torusschnitt}}
+\end{figure}
+\index{Torus}%
+Schneidet man einen Torus mit einer Ebene, die zur Achse des Torus
+parallel ist und den inneren Äquator des Torus berührt, wie in
+Abbildung~\ref{buch:elliptisch:lemniskate:torusschnitt},
+entsteht ebenfalls eine Lemniskate, wie in diesem Abschnitt nachgewiesen
+werden soll.
+
+Der in Abbildung~\ref{buch:elliptisch:lemniskate:torusschnitt}
+dargestellte Torus mit den Radien $2$ und $1$ hat als Achse die
+um eine Einheit in $Z$-Richtung verschobene $Y$-Achse und die
+$X$-$Z$-Ebene als Äquatorebene.
+Der Torus kann mit
+\[
+(u,v)
+\mapsto
+\begin{pmatrix}
+(2+\cos u) \cos v \\
+ \sin u \\
+(2+\cos u) \sin v + 1
+\end{pmatrix}
+\]
+parametrisiert werden, die $u$- und $v$-Koordinatenlinien sind
+in der Abbildung gelb eingezeichnet.
+Die $v$-Koordinatenlinien sind Breitenkreise um die Achse des Torus.
+Aus $u=0$ und $u=\pi$ ergeben sich die Äquatoren des Torus.
+
+Die Gleichung $Z=0$ beschreibt eine achsparallele Ebene, die den
+inneren Äquator berührt.
+Die Schnittkurve erfüllt daher
+\[
+(2+\cos u)\sin v + 1 = 0,
+\]
+was wir auch als $2 +\cos u = -1/\sin v$ schreiben können.
+Wir müssen nachprüfen, dass die Koordinaten
+$X=(2+\cos u)\cos v$ und $Y=\sin u$ die Gleichung einer Lemniskate
+erfüllen.
+
+Zunächst können wir in der $X$-Koordinate den Klammerausdruck durch
+$\sin v$ ausdrücken und erhalten
+\begin{equation}
+X
+=
+(2+\cos u) \cos v
+=
+-\frac{1}{\sin v}\cos v
+=
+-\frac{\cos v}{\sin v}
+\qquad\Rightarrow\qquad
+X^2
+=
+\frac{\cos^2v}{\sin^2 v}
+=
+\frac{1-\sin^2v}{\sin^2 v}.
+\label{buch:elliptisch:lemniskate:Xsin}
+\end{equation}
+Auch die $Y$-Koordinaten können wir durch $v$ ausdrücken,
+nämlich
+\begin{equation}
+Y^2=\sin^2 u = 1-\cos^2 u
+=
+1-
+\biggl(
+\frac{1}{\sin v}
+-2
+\biggr)^2
+=
+\frac{-3\sin^2 v+4\sin v-1}{\sin^2 v}.
+\label{buch:elliptisch:lemniskate:Ysin}
+\end{equation}
+Die Gleichungen
+\eqref{buch:elliptisch:lemniskate:Xsin}
+und
+\eqref{buch:elliptisch:lemniskate:Ysin}
+zeigen, dass man $X^2$ und $Y^2$ sogar einzig durch $\sin v$
+parametrisieren kann.
+Um die Ausdrücke etwas zu vereinfachen, schreiben wir $S=\sin v$
+und erhalten zusammenfassend
+\begin{equation}
+\begin{aligned}
+X^2
+&=
+\frac{1-S^2}{S^2}
+\\
+Y^2
+&=
+\frac{-3S^2+4S-1}{S^2}.
+\end{aligned}
+\end{equation}
+Daraus kann man jetzt die Summen und Differenzen der Quadrate
+berechnen, sie sind
+\begin{equation}
+\begin{aligned}
+X^2+Y^2
+&=
+\frac{-4S^2+4S}{S^2}
+=
+\frac{4S(1-S)}{S^2}
+=
+\frac{4(1-S)}{S}
+=
+4\frac{1-S}{S}
+\\
+X^2-Y^2
+&=
+\frac{2-4S+2S^2}{S^2}
+=
+\frac{2(1-S)^2}{S^2}
+=
+2\biggl(\frac{1-S}{S}\biggr)^2.
+\end{aligned}
+\end{equation}
+Die Berechnung des Quadrates von $X^2+Y^2$ ergibt die Gleichung
+\[
+(X^2+Y^2)^2
+=
+16
+\biggl(\frac{1-S}{S}\biggr)^2
+=
+8 \cdot 2
+\biggl(\frac{1-S}{S}\biggr)^2
+=
+2\cdot 2^2\cdot (X^2-Y^2).
+\]
+Sie ist eine Lemniskaten-Gleichung für $a=2$.
+
+%
+% Bogenlänge der Lemniskate
+%
\subsection{Bogenlänge}
Die Funktionen
\begin{equation}
-x(r) = \frac{r}{\sqrt{2}}\sqrt{1+r^2},
+x(r) = \frac{r}{\!\sqrt{2}}\sqrt{1+r^2},
\quad
-y(r) = \frac{r}{\sqrt{2}}\sqrt{1-r^2}
+y(r) = \frac{r}{\!\sqrt{2}}\sqrt{1-r^2}
\label{buch:geometrie:eqn:lemniskateparam}
\end{equation}
erfüllen
@@ -91,7 +271,7 @@ r^4
=
(x(r)^2 + y(r)^2)^2,
\end{align*}
-sie stellen also eine Parametrisierung der Lemniskate dar.
+sie stellen also eine Parametrisierung der Standard-Lemniskate dar.
Mit Hilfe der Parametrisierung~\eqref{buch:geometrie:eqn:lemniskateparam}
kann man die Länge $s$ des in Abbildung~\ref{buch:elliptisch:fig:lemniskate}
@@ -101,9 +281,9 @@ Kettenregel berechnen kann:
\begin{align*}
\dot{x}(r)
&=
-\frac{\sqrt{1+r^2}}{\sqrt{2}}
+\frac{\!\sqrt{1+r^2}}{\!\sqrt{2}}
+
-\frac{r^2}{\sqrt{2}\sqrt{1+r^2}}
+\frac{r^2}{\!\sqrt{2}\sqrt{1+r^2}}
&&\Rightarrow&
\dot{x}(r)^2
&=
@@ -111,13 +291,13 @@ Kettenregel berechnen kann:
\\
\dot{y}(r)
&=
-\frac{\sqrt{1-r^2}}{\sqrt{2}}
+\frac{\!\sqrt{1-r^2}}{\!\sqrt{2}}
-
\frac{r^2}{\sqrt{2}\sqrt{1-r^2}}
&&\Rightarrow&
\dot{y}(r)^2
&=
-\frac{1-r^2}{2} -r^2 + \frac{r^4}{2(1-r^2)}
+\frac{1-r^2}{2} -r^2 + \frac{r^4}{2(1-r^2)}.
\end{align*}
Die Summe der Quadrate ist
\begin{align*}
@@ -136,7 +316,7 @@ Durch Einsetzen in das Integral für die Bogenlänge bekommt man
s(r)
=
\int_0^r
-\frac{1}{\sqrt{1-t^4}}\,dt.
+\frac{1}{\!\sqrt{1-t^4}}\,dt.
\label{buch:elliptisch:eqn:lemniskatebogenlaenge}
\end{equation}
@@ -149,11 +329,11 @@ $k^2=-1$ oder $k=i$ ist
\[
K(r,i)
=
-\int_0^x \frac{dt}{\sqrt{(1-t^2)(1-i^2 t^2)}}
+\int_0^x \frac{dt}{\!\sqrt{(1-t^2)(1-i^2 t^2)}}
=
-\int_0^x \frac{dt}{\sqrt{(1-t^2)(1-(-1)t^2)}}
+\int_0^x \frac{dt}{\!\sqrt{(1-t^2)(1-(-1)t^2)}}
=
-\int_0^x \frac{dt}{\sqrt{1-t^4}}
+\int_0^x \frac{dt}{\!\sqrt{1-t^4}}
=
s(r).
\]
@@ -180,6 +360,13 @@ $\varpi/2$.
% Bogenlängenparametrisierung
%
\subsection{Bogenlängenparametrisierung}
+\begin{figure}
+\centering
+\includegraphics{chapters/110-elliptisch/images/lemnispara.pdf}
+\caption{Parametrisierung der Lemniskate mit Jacobischen elliptischen
+Funktion wie in \eqref{buch:elliptisch:lemniskate:bogeneqn}
+\label{buch:elliptisch:lemniskate:bogenpara}}
+\end{figure}
Die Lemniskate mit der Gleichung
\[
(X^2+Y^2)^2=2(X^2-Y^2)
@@ -188,7 +375,7 @@ Die Lemniskate mit der Gleichung
kann mit Jacobischen elliptischen Funktionen
parametrisiert werden.
Dazu schreibt man
-\[
+\begin{equation}
\left.
\begin{aligned}
X(t)
@@ -201,11 +388,23 @@ Y(t)
\operatorname{cn}(t,k) \operatorname{sn}(t,k)
\end{aligned}
\quad\right\}
-\qquad\text{mit $k=\displaystyle\frac{1}{\sqrt{2}}$}
-\]
-und berechnet die beiden Seiten der definierenden Gleichung der
-Lemniskate.
-Zunächst ist
+\qquad\text{mit $k=\displaystyle\frac{1}{\sqrt{2}}.$}
+\label{buch:elliptisch:lemniskate:bogeneqn}
+\end{equation}
+Abbildung~\ref{buch:elliptisch:lemniskate:bogenpara} zeigt die
+Parametrisierung.
+Dem Parameterwert $t=0$ entspricht der Scheitelpunkt
+$S=(\!\sqrt{2},0)$ der Lemniskate.
+
+%
+% Lemniskatengleichung
+%
+\subsubsection{Verfikation der Lemniskatengleichung}
+Dass \eqref{buch:elliptisch:lemniskate:bogeneqn}
+tatsächlich eine Parametrisierung ist, kann dadurch nachgewiesen werden,
+dass man die beiden Seiten der definierenden Gleichung der
+Lemniskate berechnet.
+Zunächst sind die Quadrate von $X(t)$ und $Y(t)$
\begin{align*}
X(t)^2
&=
@@ -215,8 +414,8 @@ X(t)^2
Y(t)^2
&=
\operatorname{cn}(t,k)^2
-\operatorname{sn}(t,k)^2
-\\
+\operatorname{sn}(t,k)^2.
+\intertext{Für Summe und Differenz der Quadrate findet man jetzt}
X(t)^2+Y(t)^2
&=
2\operatorname{cn}(t,k)^2
@@ -248,54 +447,49 @@ X(t)^2-Y(t)^2
\bigr)
\\
&=
-2\operatorname{cn}(t,k)^4
-\\
+2\operatorname{cn}(t,k)^4.
+\intertext{Beide lassen sich also durch $\operatorname{cn}(t,k)^2$
+ausdrücken.
+Zusammengefasst erhält man}
\Rightarrow\qquad
(X(t)^2+Y(t)^2)^2
&=
4\operatorname{cn}(t,k)^4
=
-2(X(t)^2-Y(t)^2).
+2(X(t)^2-Y(t)^2),
\end{align*}
+eine Lemniskaten-Gleichung.
+
+%
+% Berechnung der Bogenlänge
+%
+\subsubsection{Berechnung der Bogenlänge}
Wir zeigen jetzt, dass dies tatsächlich eine Bogenlängenparametrisierung
der Lemniskate ist.
Dazu berechnen wir die Ableitungen
\begin{align*}
\dot{X}(t)
&=
-\sqrt{2}\operatorname{cn}'(t,k)\operatorname{dn}(t,k)
+\!\sqrt{2}\operatorname{cn}'(t,k)\operatorname{dn}(t,k)
+
-\sqrt{2}\operatorname{cn}(t,k)\operatorname{dn}'(t,k)
+\!\sqrt{2}\operatorname{cn}(t,k)\operatorname{dn}'(t,k)
\\
&=
--\sqrt{2}\operatorname{sn}(t,k)\operatorname{dn}(t,k)^2
+-\!\sqrt{2}\operatorname{sn}(t,k)\operatorname{dn}(t,k)^2
-\frac12\sqrt{2}\operatorname{sn}(t,k)\operatorname{cn}(t,k)^2
\\
&=
--\sqrt{2}\operatorname{sn}(t,k)\bigl(
+-\!\sqrt{2}\operatorname{sn}(t,k)\bigl(
1-{\textstyle\frac12}\operatorname{sn}(t,k)^2
-+{\textstyle\frac12}-{\textstyle\frac12}\operatorname{sn}(u,t)^2
++{\textstyle\frac12}-{\textstyle\frac12}\operatorname{sn}(t,k)^2
\bigr)
\\
&=
-\sqrt{2}\operatorname{sn}(t,k)
+\!\sqrt{2}\operatorname{sn}(t,k)
\bigl(
{\textstyle \frac32}-\operatorname{sn}(t,k)^2
\bigr)
\\
-\dot{X}(t)^2
-&=
-2\operatorname{sn}(t,k)^2
-\bigl(
-{\textstyle \frac32}-\operatorname{sn}(t,k)^2
-\bigr)^2
-\\
-&=
-{\textstyle\frac{9}{2}}\operatorname{sn}(t,k)^2
--
-6\operatorname{sn}(t,k)^4
-+2\operatorname{sn}(t,k)^6
-\\
\dot{Y}(t)
&=
\operatorname{cn}'(t,k)\operatorname{sn}(t,k)
@@ -310,6 +504,19 @@ Dazu berechnen wir die Ableitungen
\\
&=
\operatorname{dn}(t,k)\bigl(1-2\operatorname{sn}(t,k)^2\bigr)
+\intertext{und davon die Quadrate}
+\dot{X}(t)^2
+&=
+2\operatorname{sn}(t,k)^2
+\bigl(
+{\textstyle \frac32}-\operatorname{sn}(t,k)^2
+\bigr)^2
+\\
+&=
+{\textstyle\frac{9}{2}}\operatorname{sn}(t,k)^2
+-
+6\operatorname{sn}(t,k)^4
++2\operatorname{sn}(t,k)^6
\\
\dot{Y}(t)^2
&=
@@ -319,25 +526,28 @@ Dazu berechnen wir die Ableitungen
&=
1-{\textstyle\frac{9}{2}}\operatorname{sn}(t,k)^2
+6\operatorname{sn}(t,k)^4
--2\operatorname{sn}(t,k)^6
-\\
+-2\operatorname{sn}(t,k)^6.
+\intertext{Für das Bogenlängenintegral wird die Quadratsumme der Ableitungen
+benötigt, diese ist}
\dot{X}(t)^2 + \dot{Y}(t)^2
&=
1.
-\end{align*}
-Dies bedeutet, dass die Bogenlänge zwischen den Parameterwerten $0$ und $s$
-\[
-\int_0^s
-\sqrt{\dot{X}(t)^2 + \dot{Y}(t)^2}
-\,dt
-=
-\int_0^s\,dt
+\intertext{Dies bedeutet, dass die Bogenlänge zwischen den
+Parameterwerten $0$ und $t$}
+\int_0^t
+\sqrt{\dot{X}(\tau)^2 + \dot{Y}(\tau)^2}
+\,d\tau
+&=
+\int_0^s\,d\tau
=
-s,
-\]
-der Parameter $t$ ist also ein Bogenlängenparameter, man darf also
-$s=t$ schreiben.
+t,
+\end{align*}
+der Parameter $t$ ist also ein Bogenlängenparameter.
+%
+% Bogenlängenparametrisierung der Standard-Lemniskate
+%
+\subsubsection{Bogenlängenparametrisierung der Standard-Lemniskate}
Die mit dem Faktor $1/\sqrt{2}$ skalierte Standard-Lemniskate mit der
Gleichung
\[
@@ -345,19 +555,31 @@ Gleichung
\]
hat daher eine Bogenlängenparametrisierung mit
\begin{equation}
+\left.
\begin{aligned}
x(t)
&=
-\phantom{\frac{1}{\sqrt{2}}}
-\operatorname{cn}(\sqrt{2}t,k)\operatorname{dn}(\sqrt{2}t,k)
+\phantom{\frac{1}{\!\sqrt{2}}}
+\operatorname{cn}(\!\sqrt{2}t,k)\operatorname{dn}(\!\sqrt{2}t,k)
\\
y(t)
&=
-\frac{1}{\sqrt{2}}\operatorname{cn}(\sqrt{2}t,k)\operatorname{sn}(\sqrt{2}t,k)
+\frac{1}{\!\sqrt{2}}
+\operatorname{cn}(\!\sqrt{2}t,k)\operatorname{sn}(\!\sqrt{2}t,k)
\end{aligned}
+\quad
+\right\}
+\qquad
+\text{mit $\displaystyle k=\frac{1}{\!\sqrt{2}}.$}
\label{buch:elliptisch:lemniskate:bogenlaenge}
\end{equation}
+Der Punkt $t=0$ entspricht dem Scheitelpunkt $S=(1,0)$ der Lemniskate.
+Der Parameter misst also die Bogenlänge entlang der Lemniskate ausgehend
+vom Scheitel.
+%
+% der lemniskatische Sinus und Kosinus
+%
\subsection{Der lemniskatische Sinus und Kosinus}
Der Sinus berechnet die Gegenkathete zu einer gegebenen Bogenlänge des
Kreises, er ist die Umkehrfunktion der Funktion, die der Gegenkathete
@@ -365,42 +587,100 @@ die Bogenlänge zuordnet.
Daher ist es naheliegend, die Umkehrfunktion von $s(r)$ in
\eqref{buch:elliptisch:eqn:lemniskatebogenlaenge}
den {\em lemniskatischen Sinus} zu nennen mit der Bezeichnung
-$r=\operatorname{sl} s$.
+\index{lemniskatischer Sinus}%
+\index{Sinus, lemniskatischer}%
+$r=r(s)=\operatorname{sl} s$.
+\index{komplementäre Bogenlänge}
+%
+% die komplementäre Bogenlänge
+%
+\subsubsection{Die komplementäre Bogenlänge}
Der Kosinus ist der Sinus des komplementären Winkels.
Auch für die lemniskatische Bogenlänge $s(r)$ lässt sich eine
-komplementäre Bogenlänge definieren, nämlich die Bogenlänge zwischen
-dem Punkt $(x(r), y(r))$ und $(1,0)$.
-Da die Bogenlänge zwischen $(0,0)$ und $(1,0)$ in
-in \eqref{buch:elliptisch:eqn:varpi} bereits bereichnet wurde.
-ist sie $\varpi/2-s$.
+komplementäre Bogenlänge $t$ definieren, nämlich die Bogenlänge
+zwischen dem Punkt $(x(r), y(r))$ und dem Scheitelpunkt $S=(1,0)$.
+Dies ist der Parameter der Parametrisierung
+\eqref{buch:elliptisch:lemniskate:bogenlaenge}
+des vorangegangenen Abschnittes.
+Die Bogenlänge zwischen $O=(0,0)$ und $S=(1,0)$ wurde in
+\eqref{buch:elliptisch:eqn:varpi} bereits bereichnet,
+sie ist $\varpi/2$.
+Damit folgt für die beiden Parameter $s$ und $t$ die Beziehung
+$t = \varpi/2 - s$.
+
+\subsubsection{Der lemniskatische Kosinus}
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{chapters/110-elliptisch/images/slcl.pdf}
+\caption{
+Lemniskatischer Sinus und Kosinus sowie Sinus und Kosinus
+mit derart skaliertem Argument, dass die Funktionen die
+gleichen Nullstellen haben.
+\label{buch:elliptisch:figure:slcl}}
+\end{figure}
Der {\em lemniskatische Kosinus} ist daher
-$\operatorname{cl}(s) = \operatorname{sl}(\varpi/2-s)$
+$\operatorname{cl}(s) = \operatorname{sl}(\varpi/2-s)$.
Graphen des lemniskatische Sinus und Kosinus sind in
-Abbildung~\label{buch:elliptisch:figure:slcl} dargestellt.
+Abbildung~\ref{buch:elliptisch:figure:slcl} dargestellt.
-Da die Parametrisierung~\eqref{buch:elliptisch:lemniskate:bogenlaenge}
-eine Bogenlängenparametrisierung ist, darf man $t=s$ schreiben.
-Dann kann man aber auch $r(s)$ daraus berechnen,
-es ist
+Die Parametrisierung~\eqref{buch:elliptisch:lemniskate:bogenlaenge}
+ist eine Bogenlängenparametrisierung der Standard-Lemniskate.
+Man kann sie verwenden, um $r(t)$ zu berechnen.
+Es ist
\[
-r(s)^2
+r(t)^2
=
-x(s)^2 + y(s)^2
+x(t)^2 + y(t)^2
+=
+\operatorname{cn}(\!\sqrt{2}t,k)^2
+\biggl(
+\operatorname{dn}(\!\sqrt{2}t,k)^2
++
+\frac12
+\operatorname{sn}(\!\sqrt{2}t,k)^2
+\biggr)
+=
+\operatorname{cn}(\!\sqrt{2}t,k)^2.
+\]
+Die Wurzel ist
+\[
+r(t)
+=
+\operatorname{cn}(\!\sqrt{2}t,{\textstyle\frac{1}{\!\sqrt{2}}})
+.
+\]
+Der lemniskatische Sinus wurde aber in Abhängigkeit von
+$s=\varpi/2-t$ mittels
+\[
+\operatorname{sl}s
=
-\operatorname{cn}(s\sqrt{2},k)^2
-\qquad\Rightarrow\qquad
r(s)
=
-\operatorname{cn}(s\sqrt{2},k)
+\operatorname{cn}(\!\sqrt{2}(\varpi/2-s),k)^2
\]
+definiert.
+Der lemniskatische Kosinus ist definiert als der lemniskatische Sinus
+\index{lemniskatischer Kosinus}%
+\index{Kosinus, lemniskatischer}%
+der komplementären Bogenlänge, also
+\[
+\operatorname{cl}(s)
+=
+\operatorname{sl}(\varpi/2-s)
+=
+\operatorname{cn}(\!\sqrt{2}s,k)^2.
+\]
+Die Funktion $\operatorname{sl}(s)$ und $\operatorname{cl}(s)$ sind
+in Abbildung~\ref{buch:elliptisch:figure:slcl} dargestellt.
+Sie sind beide $2\varpi$-periodisch.
+Die Abbildung zeigt ausserdem die Funktionen $\sin (\pi s/\varpi)$
+und $\cos(\pi s/\varpi)$, die ebenfalls $2\varpi$-periodisch sind.
+
+Die Darstellung des lemniskatischen Sinus und Kosinus durch die
+Jacobische elliptische Funktion $\operatorname{cn}(\!\sqrt{2}s,k)$
+zeigt einmal mehr den Nutzen der Jacobischen elliptischen Funktionen.
+
+
+
-\begin{figure}
-\centering
-\includegraphics[width=\textwidth]{chapters/110-elliptisch/images/slcl.pdf}
-\caption{
-Lemniskatischer Sinus und Kosinus sowie Sinus und Kosinus
-mit derart skaliertem Argument, dass die Funktionen die gleichen Nullstellen
-haben.
-\label{buch:elliptisch:figure:slcl}}
-\end{figure}