aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/110-elliptisch/mathpendel.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/110-elliptisch/mathpendel.tex')
-rw-r--r--buch/chapters/110-elliptisch/mathpendel.tex250
1 files changed, 250 insertions, 0 deletions
diff --git a/buch/chapters/110-elliptisch/mathpendel.tex b/buch/chapters/110-elliptisch/mathpendel.tex
new file mode 100644
index 0000000..d61bcf6
--- /dev/null
+++ b/buch/chapters/110-elliptisch/mathpendel.tex
@@ -0,0 +1,250 @@
+%
+% mathpendel.tex -- Das mathematische Pendel
+%
+% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+
+\subsection{Das mathematische Pendel
+\label{buch:elliptisch:subsection:mathpendel}}
+\begin{figure}
+\centering
+\includegraphics{chapters/110-elliptisch/images/pendel.pdf}
+\caption{Mathematisches Pendel
+\label{buch:elliptisch:fig:mathpendel}}
+\end{figure}
+Das in Abbildung~\ref{buch:elliptisch:fig:mathpendel} dargestellte
+Mathematische Pendel besteht aus einem Massepunkt der Masse $m$
+im Punkt $P$,
+der über eine masselose Stange der Länge $l$ mit dem Drehpunkt $O$
+verbunden ist.
+Das Pendel bewegt sich unter dem Einfluss der Schwerebeschleunigung $g$.
+
+Das Trägheitsmoment des Massepunktes um den Drehpunkt $O$ ist
+\(
+I=ml^2
+\).
+Das Drehmoment der Schwerkraft ist
+\(M=gl\sin\vartheta\).
+Die Bewegungsgleichung wird daher
+\[
+\begin{aligned}
+\frac{d}{dt} I\dot{\vartheta}
+&=
+M
+=
+gl\sin\vartheta
+\\
+ml^2\ddot{\vartheta}
+&=
+gl\sin\vartheta
+&&\Rightarrow&
+\ddot{\vartheta}
+&=\frac{g}{l}\sin\vartheta
+\end{aligned}
+\]
+Dies ist eine nichtlineare Differentialgleichung zweiter Ordnung, die
+wir nicht unmittelbar mit den Differentialgleichungen erster Ordnung
+der elliptischen Funktionen vergleichen können.
+
+Die Differentialgleichungen erster Ordnung der elliptischen Funktionen
+enthalten das Quadrat der ersten Ableitung.
+In unserem Fall entspricht das einer Gleichung, die $\dot{\vartheta}^2$
+enthält.
+Der Energieerhaltungssatz kann uns eine solche Gleichung geben.
+Die Summe von kinetischer und potentieller Energie muss konstant sein.
+Dies führt auf
+\[
+E_{\text{kinetisch}}
++
+E_{\text{potentiell}}
+=
+\frac12I\dot{\vartheta}^2
++
+mgl(1-\cos\vartheta)
+=
+\frac12ml^2\dot{\vartheta}^2
++
+mgl(1-\cos\vartheta)
+=
+E
+\]
+Durch Auflösen nach $\dot{\vartheta}$ kann man jetzt die
+Differentialgleichung
+\[
+\dot{\vartheta}^2
+=
+-
+\frac{2g}{l}(1-\cos\vartheta)
++\frac{2E}{ml^2}
+\]
+finden.
+In erster Näherung, d.h. wenn man die rechte Seite bis zu vierten
+Potenzen in eine Taylor-Reihe in $\vartheta$ entwickelt, ist dies
+tatsächlich eine Differentialgleichung der Art, wie wir sie für
+elliptische Funktionen gefunden haben, wir möchten aber eine exakte
+Lösung konstruieren.
+
+Die maximale Energie für eine Bewegung, bei der sich das Pendel gerade
+über den höchsten Punkt hinweg zu bewegen vermag, ist
+$E=2lmg$.
+Falls $E<2mgl$ ist, erwarten wir Schwingungslösungen, bei denen
+der Winkel $\vartheta$ immer im offenen Interval $(-\pi,\pi)$
+bleibt.
+Für $E>2mgl$ wird sich das Pendel im Kreis bewegen, für sehr grosse
+Energie ist die kinetische Energie dominant, die Verlangsamung im
+höchsten Punkt wird immer weniger ausgeprägt sein.
+
+%
+% Koordinatentransformation auf elliptische Funktionen
+%
+\subsubsection{Koordinatentransformation auf elliptische Funktionen}
+Wir verwenden als neue Variable
+\[
+y = \sin\frac{\vartheta}2
+\]
+mit der Ableitung
+\[
+\dot{y}=\frac12\cos\frac{\vartheta}{2}\cdot \dot{\vartheta}.
+\]
+Man beachte, dass $y$ nicht eine Koordinate in
+Abbildung~\ref{buch:elliptisch:fig:mathpendel} ist.
+
+Aus den Halbwinkelformeln finden wir
+\[
+\cos\vartheta
+=
+1-2\sin^2 \frac{\vartheta}2
+=
+1-2y^2.
+\]
+Dies können wir zusammen mit der
+Identität $\cos^2\vartheta/2 = 1-\sin^2\vartheta/2 = 1-y^2$
+in die Energiegleichung einsetzen und erhalten
+\[
+\frac12ml^2\dot{\vartheta}^2 + mgly^2 = E
+\qquad\Rightarrow\qquad
+\frac14 \dot{\vartheta}^2 = \frac{E}{2ml^2} - \frac{g}{2l}y^2.
+\]
+Der konstante Term auf der rechten Seite ist grösser oder kleiner als
+$1$ je nachdem, ob das Pendel sich im Kreis bewegt oder nicht.
+
+Durch Multiplizieren mit $\cos^2\frac{\vartheta}{2}=1-y^2$
+erhalten wir auf der linken Seite einen Ausdruck, den wir
+als Funktion von $\dot{y}$ ausdrücken können.
+Wir erhalten
+\begin{align*}
+\frac14
+\cos^2\frac{\vartheta}2
+\cdot
+\dot{\vartheta}^2
+&=
+\frac14
+(1-y^2)
+\biggl(\frac{E}{2ml^2} -\frac{g}{2l}y^2\biggr)
+\\
+\dot{y}^2
+&=
+\frac{1}{4}
+(1-y^2)
+\biggl(\frac{E}{2ml^2} -\frac{g}{2l}y^2\biggr)
+\end{align*}
+Die letzte Gleichung hat die Form einer Differentialgleichung
+für elliptische Funktionen.
+Welche Funktion verwendet werden muss, hängt von der Grösse der
+Koeffizienten in der zweiten Klammer ab.
+Die Tabelle~\ref{buch:elliptisch:tabelle:loesungsfunktionen}
+zeigt, dass in der zweiten Klammer jeweils einer der Terme
+$1$ sein muss.
+
+%
+% Der Fall E < 2mgl
+%
+\subsubsection{Der Fall $E<2mgl$}
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{chapters/110-elliptisch/images/jacobiplots.pdf}
+\caption{%
+Abhängigkeit der elliptischen Funktionen von $u$ für
+verschiedene Werte von $k^2=m$.
+Für $m=0$ ist $\operatorname{sn}(u,0)=\sin u$,
+$\operatorname{cn}(u,0)=\cos u$ und $\operatorname{dn}(u,0)=1$, diese
+sind in allen Plots in einer helleren Farbe eingezeichnet.
+Für kleine Werte von $m$ weichen die elliptischen Funktionen nur wenig
+von den trigonometrischen Funktionen ab,
+es ist aber klar erkennbar, dass die anharmonischen Terme in der
+Differentialgleichung die Periode mit steigender Amplitude verlängern.
+Sehr grosse Werte von $m$ nahe bei $1$ entsprechen der Situation, dass
+die Energie des Pendels fast ausreicht, dass es den höchsten Punkt
+erreichen kann, was es für $m$ macht.
+\label{buch:elliptisch:fig:jacobiplots}}
+\end{figure}
+
+
+Wir verwenden als neue Variable
+\[
+y = \sin\frac{\vartheta}2
+\]
+mit der Ableitung
+\[
+\dot{y}=\frac12\cos\frac{\vartheta}{2}\cdot \dot{\vartheta}.
+\]
+Man beachte, dass $y$ nicht eine Koordinate in
+Abbildung~\ref{buch:elliptisch:fig:mathpendel} ist.
+
+Aus den Halbwinkelformeln finden wir
+\[
+\cos\vartheta
+=
+1-2\sin^2 \frac{\vartheta}2
+=
+1-2y^2.
+\]
+Dies können wir zusammen mit der
+Identität $\cos^2\vartheta/2 = 1-\sin^2\vartheta/2 = 1-y^2$
+in die Energiegleichung einsetzen und erhalten
+\[
+\frac12ml^2\dot{\vartheta}^2 + mgly^2 = E.
+\]
+Durch Multiplizieren mit $\cos^2\frac{\vartheta}{2}=1-y^2$
+erhalten wir auf der linken Seite einen Ausdruck, den wir
+als Funktion von $\dot{y}$ ausdrücken können.
+Wir erhalten
+\begin{align*}
+\frac12ml^2
+\cos^2\frac{\vartheta}2
+\dot{\vartheta}^2
+&=
+(1-y^2)
+(E -mgly^2)
+\\
+\frac{1}{4}\cos^2\frac{\vartheta}{2}\dot{\vartheta}^2
+&=
+\frac{1}{2}
+(1-y^2)
+\biggl(\frac{E}{ml^2} -\frac{g}{l}y^2\biggr)
+\\
+\dot{y}^2
+&=
+\frac{E}{2ml^2}
+(1-y^2)\biggl(
+1-\frac{2gml}{E}y^2
+\biggr).
+\end{align*}
+Dies ist genau die Form der Differentialgleichung für die elliptische
+Funktion $\operatorname{sn}(u,k)$
+mit $k^2 = 2gml/E< 1$.
+
+%%
+%% Der Fall E > 2mgl
+%%
+%\subsection{Der Fall $E > 2mgl$}
+%In diesem Fall hat das Pendel im höchsten Punkte immer noch genügend
+%kinetische Energie, so dass es sich im Kreise dreht.
+%Indem wir die Gleichung
+
+
+%\subsection{Soliton-Lösungen der Sinus-Gordon-Gleichung}
+
+%\subsection{Nichtlineare Differentialgleichung vierter Ordnung}
+%XXX Möbius-Transformation \\
+%XXX Reduktion auf die Differentialgleichung elliptischer Funktionen