diff options
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/010-potenzen/loesbarkeit.tex | 68 | ||||
-rw-r--r-- | buch/chapters/010-potenzen/polynome.tex | 93 |
2 files changed, 160 insertions, 1 deletions
diff --git a/buch/chapters/010-potenzen/loesbarkeit.tex b/buch/chapters/010-potenzen/loesbarkeit.tex index 692192d..f93a84b 100644 --- a/buch/chapters/010-potenzen/loesbarkeit.tex +++ b/buch/chapters/010-potenzen/loesbarkeit.tex @@ -20,8 +20,21 @@ für ein Polynome $p(x)$ und eine Konstante $c\in\mathbb{C}$. % Fundamentalsatz der Algebra % \subsection{Fundamentalsatz der Algebra} +In Abschnitt~\ref{buch:polynome:subsection:faktorisierung-und-nullstellen} +wurde gezeigt, dass sich jede Nullstellen $\alpha$ eines Polynoms als +Faktor $x-\alpha$ abspalten lässt. +Jedes Polynom liess sich in ein Produkt von Linearfaktoren und +einen Faktor zerlegen, der keine Nullstellen hat. +Zum Beispiel hat das Polynom $x^2+1\in\mathbb{R}[x]$ keine +Nullstellen in $\mathbb{R}$. +Eine solche Nullstelle müsste eine Quadratwurzel von $-1$ sein. +Die komplexen Zahlen $\mathbb{C}$ wurden genau mit dem Ziel konstruiert, +dass $i=\sqrt{-1}$ sinnvoll wird. +Der Fundamentalsatz der Algebra zeigt, dass $\mathbb{C}$ alle +Nullstellen von Polynomen enthält. \begin{satz}[Gauss] +\index{Fundamentalsatz der Algebra}% \label{buch:potenzen:satz:fundamentalsatz} Jedes Polynom $p(x)=a_nx^n+\dots + a_2x^2 + a_1x + a_0\in\mathbb{C}[x]$ zerfällt in ein Produkt @@ -34,6 +47,7 @@ a_n für Nullstellen $\alpha_k\in\mathbb{C}$. \end{satz} + % % Lösbarkeit durch Wurzelausdrücke % @@ -148,3 +162,57 @@ Für Polynomegleichungen vom Grad $n\ge 5$ gibt es keine allgemeine Lösung durch Wurzelausdrücke. \end{satz} + + +% +% Algebraische Zahlen +% +\subsection{Algebraische Zahlen} +Die Verwendung der komplexen Zahlen ist für numerische Rechnungen +zweckmässig. +In den Anwendungen der Computer-Algebra hingegen erwartet man zum +Beispiel exakte Formeln für eine Stammfunktion. +Nicht rationale Zahlen können nur exakt verarbeitet werden, wenn +Sie sich algebraisch in endlich vielen Schritten charakterisieren +lassen. +Dies ist zum Beispiel für rationale Zahlen $\mathbb{Q}$ möglich. +Gewisse irrationale Zahlen kann man charakterisieren durch +die Eigenschaft, Nullstelle eines Polynoms $p(x)\in\mathbb{Q}[x]$ +mit rationalen Koeffizienten zu sein. + +\begin{definition} +Eine Zahl $\alpha$ heisst {\em algebraisch} über $\mathbb{Q}$, +wenn es ein Polynom +\index{algebraische Zahl}% +$p(x)\in \mathbb{Q}[x]$ gibt, welches $\alpha$ als Nullstelle hat. +Eine Zahl heisst transzendent über $\mathbb{Q}$, wenn sie nicht algebraisch ist +über $\mathbb{Q}$. +\end{definition} + +Die Zahlen $i=\sqrt{-1}$ und $\sqrt{n\mathstrut}$ für $n\in\mathbb{N}$ +sind also algebraisch über $\mathbb{Z}$. +Es ist gezeigt worden, dass $\pi$ und $e$ nicht nur irrational +sind, sondern sogar transzendent. + +Eine Polynomgleichung $p(\alpha)=0$ mit $p(x)\in\mathbb{Q}[x]$ +hat eine Rechenregel für $\alpha$ zur Folge. +Dazu schreibt man +\[ +p_n\alpha^n + p_{n-1}\alpha^{n-1} + \dots + a_1\alpha + a_0 =0 +\qquad\Rightarrow\qquad +\alpha^n = -\frac{1}{p_n}\bigl( +p_{n-1}\alpha^{n-1}+\dots+a_1\alpha+a_0 +\bigr). +\] +Diese Regel erlaubt, jede Potenz $\alpha^k$ mit $k\ge n$ durch +Potenzen von $\alpha^l$ mit $l<n$ auszudrücken. +Die Zahlen, die sich durch arithmetische Operationen aus +$\alpha$ bilden lassen, lassen sich also sogar durch lineare +Operationen aus $1,\alpha,\alpha^2,\dots,\alpha^{n-1}$ +bilden. +Sie bilden einen endlichdimensionalen Vektorraum über $\mathbb{Q}$. +Rechnen mit algebraischen Zahlen ist also in einem CAS exakt möglich, +wie das in Abschnitt~\ref{buch:integrale:section:dkoerper} +für die Berechnung von Stammfunktionen illustriert wird. + + diff --git a/buch/chapters/010-potenzen/polynome.tex b/buch/chapters/010-potenzen/polynome.tex index 2086078..9edb012 100644 --- a/buch/chapters/010-potenzen/polynome.tex +++ b/buch/chapters/010-potenzen/polynome.tex @@ -83,6 +83,22 @@ ebenfalls als Approximationen dienen können. Weitere Möglichkeiten liefern Interpolationsmethoden der numerischen Mathematik. +Diese Betrachtungsweise von Polynomen als Funktionen trägt +aber den zusätzlichen algebraischen Eigenschaften des Polynomringes +nicht ausreichend Rechnung. +Zum Beispiel bedeutet Gleichheit von zwei reellen Funktion $f(x)$ und +$g(x)$, dass man $f(x)=g(x)$ für alle $x\in\mathbb{R}$ nachprüfen +muss. +Für Polynome reicht es jedoch, die Funktionswerte in nur wenigen +Punkten zu vergleichen. +Dies äussert sich zum Beispiel auch im Prinzip des +Koeffizientenvergleichs von +Satz~\ref{buch:polynome:satz:koeffizientenvergleich}. +Im Gegensatz zu beliebigen Funktionen kann man daher Aussagen +über Polynomen immer mit endlich Algorithmen entscheiden. +Die nächsten Abschnitte sollen diese algebraischen Eigenschaften +zusammenfassen. + % % Polynomdivision, Teilbarkeit und ggT % @@ -287,7 +303,8 @@ gilt. % % Faktorisierung und Nullstellen % -\subsection{Faktorisierung und Nullstellen} +\subsection{Faktorisierung und Nullstellen +\label{buch:polynome:subsection:faktorisierung-und-nullstellen}} % wird später gebraucht um bei der Definition der hypergeometrischen Reihe % die Zaehler- und Nenner-Polynome als Pochhammer-Symbole zu entwickeln Ist $\alpha$ eine Nullstelle des Polynoms $a(x)$, also $a(\alpha)=0$. @@ -318,6 +335,21 @@ r(\alpha), der Rest $r(x)$ muss also verschwinden. Für eine Nullstelle $\alpha$ von $a(x)$ ist $a(x)$ durch $(x-\alpha)$ teilbar. +Daraus folgt auch, dass ein Polynom $a(x)$ vom Grad $n=\deg a(x)$ höchstens +$n$ verschiedene Nullstellen haben kann. + +Sind $\alpha_1,\dots,\alpha_k$ alle Nullstellen von $a(x)$, dann lässt +sich $a(x)$ zerlegen in Faktoren +\[ +a(x) += +(x-\alpha_1)^{m_1} +(x-\alpha_2)^{m_2} +\cdots +(x-\alpha_k)^{m_k} +b(x). +\] +Das Polynom $b(x)\in K[x]$ hat keine Nullstellen in $K$. Wenn zwei Polynome $a(x)$ und $b(x)$ eine gemeinsame Nullstelle $\alpha$ haben, dann ist $(x-\alpha)$ ein Teiler beider Polynome und somit auch @@ -331,7 +363,66 @@ gemeinsame Nullstellen von $a(x)$ und $b(x)$. \subsection{Koeffizienten-Vergleich} % Wird gebraucht für die Potenzreihen-Methode % Muss später ausgedehnt werden auf Potenzreihen +Wenn zwei Polynome $a(x)$ und $b(x)$ vom Grad $\le n$ die gleichen +Koeffizienten haben, dann sind sie selbstverständlich gleich. +Weniger klar ist, ob zwei Polynome, die die gleichen Werte für beliebige +$x$ haben, auch die gleichen Koeffizienten haben. +Wir nehmen also an, dass $a(x)=b(x)$ gilt für jedes $x\in K$ und +wollen daraus ableiten, dass die Koeffizienten übereinstimmen müssen. +Seien $x_1,\dots,x_n$ verschiedene Elemente in $K$, dann +hat das Polynom $p(x)=a(x)-b(x)$, welches Grad $\le n$ hat, +die $n$ Nullstellen $x_k$ für $k=1,\dots,n$. +$p(x)$ ist also durch alle Polynome $x-x_k$ teilbar. +Weil $\deg p\le n$ ist, muss +\[ +0 += +a(x)-b(x) += +p(x) += +p_n +(x-x_1)(x-x_2)\cdots (x-x_n) +\] +sein. +Ist $y\in K$ verschieden von den Nullstellen $x_i$, dann ist +in $y-x_i\ne 0$ für alle $i$. +Für das Produkt gilt dann +\[ +0 += +p(y) += +p_n +(\underbrace{x-x_1}_{\displaystyle \ne 0}) +\cdots +(\underbrace{x-x_n}_{\displaystyle \ne 0}), +\] +so dass $p_n=0$ sein muss, was schliesslich dazu führt, dass alle +Koeffizienten von $a(x)-b(x)$ verschwinden. +Daraus folgt das Prinzip des Koeffizientenvergleichs: + +\begin{satz}[Koeffizientenvergleich] +\label{buch:polynome:satz:koeffizientenvergleich} +Zwei Polynome $a(x)$ und $b(x)$ stimmen genau dann überein, wenn +sie die gleichen Koeffizienten haben. +\end{satz} +Man beachte, dass dieses Prinzip nur funktioniert, wenn es genügend +viele verschiedene Elemente in $K$ gibt. +Für die endlichen Körper $\mathbb{F}_p$ gilt dies nicht, denn es gilt +\[ +a(x) += +x^p-x\equiv 0\mod p +\] +für jede Zahl $x\in\mathbb{F}_p$, das Polynom $a(x)$ mit Grad $p$ +hat also genau $p$ Nullstellen, es gibt aber keine weitere Nullstelle, +mit der man wie oben schliessen könnte, dass $a(x)$ das Nullpolynom ist. + +% +% Berechnung von Polynom-Werten +% \subsection{Berechnung von Polynom-Werten} Die naive Berechnung der Werte eines Polynoms $p(x)$ vom Grad $n$ beginnt mit der Berechnung der Potenzen von $x$. |