aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/0f1/teil1.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/0f1/teil1.tex')
-rw-r--r--buch/papers/0f1/teil1.tex181
1 files changed, 101 insertions, 80 deletions
diff --git a/buch/papers/0f1/teil1.tex b/buch/papers/0f1/teil1.tex
index 910e8bb..f697f45 100644
--- a/buch/papers/0f1/teil1.tex
+++ b/buch/papers/0f1/teil1.tex
@@ -1,80 +1,101 @@
-%
-% teil1.tex -- Mathematischer Hintergrund
-%
-% (c) 2022 Fabian Dünki, Hochschule Rapperswil
-%
-\section{Mathematischer Hintergrund
-\label{0f1:section:mathHintergrund}}
-\rhead{Mathematischer Hintergrund}
-
-\subsection{Hypergeometrische Funktion $\mathstrut_0F_1$
-\label{0f1:subsection:0f1}}
-Wie in Kapitel \ref{buch:rekursion:section:hypergeometrische-funktion} beschrieben,
-wird die Funktion $\mathstrut_0F_1$ folgendermassen definiert.
-\begin{definition}
- \label{0f1:rekursion:hypergeometrisch:def}
- Die hypergeometrische Funktion
- $\mathstrut_0F_1$ ist definiert durch die Reihe
- \[
- \mathstrut_0F_1
- \biggl(
- \begin{matrix}
- \\
- b_1
- \end{matrix}
- ;
- x
- \biggr)
- =
- \mathstrut_0F_1(;b_1;x)
- =
- \sum_{k=0}^\infty
- \frac{1}{(b_1)_k}\frac{x^k}{k!}.
- \]
-\end{definition}
-
-
-\subsection{Airy Funktion
-\label{0f1:subsection:airy}}
-Wie in \ref{buch:differentialgleichungen:section:hypergeometrisch} dargestellt, ist die Airy-Differentialgleichung
-folgendermassen definiert.
-\begin{definition}
- y'' - xy = 0
- \label{0f1:airy:eq:differentialgleichung}
-\end{definition}
-
-Daraus ergibt sich wie in Aufgabe~\ref{503} gefundenen Lösungen der
-Airy-Differentialgleichung als hypergeometrische Funktionen.
-
-
-\begin{align*}
-y_1(x)
-=
-\sum_{k=0}^\infty
-\frac{1}{(\frac23)_k} \frac{1}{k!}\biggl(\frac{x^3}{9}\biggr)^k
-=
-\mathstrut_0F_1\biggl(
-\begin{matrix}\text{---}\\\frac23\end{matrix};\frac{x^3}{9}
-\biggr).
-\\
-y_2(x)
-=
-\sum_{k=0}^\infty
-\frac{1}{(\frac43)_k} \frac{1}{k!}\biggl(\frac{x^3}{9}\biggr)^k
-=
-x\cdot\mathstrut_0F_1\biggl(
-\begin{matrix}\text{---}\\\frac43\end{matrix};
-\frac{x^3}{9}
-\biggr).
-\qedhere
-\end{align*}
-
-
-\begin{figure}
- \centering
- \includegraphics{papers/0f1/images/airy.pdf}
- \caption{Plot der Lösungen der Airy-Differentialgleichung $y''-xy=0$
- zu den Anfangsbedingungen $y(0)=1$ und $y'(0)=0$ in {\color{red}rot}
- und $y(0)=0$ und $y'(0)=1$ in {\color{blue}blau}.
- \label{0f1:airy:plot:vorgabe}}
-\end{figure} \ No newline at end of file
+%
+% teil1.tex -- Mathematischer Hintergrund
+%
+% (c) 2022 Fabian Dünki, Hochschule Rapperswil
+%
+\section{Mathematischer Hintergrund
+\label{0f1:section:mathHintergrund}}
+\rhead{Mathematischer Hintergrund}
+Basierend auf den Herleitungen des vorhergehenden Abschnittes \ref{buch:rekursion:section:hypergeometrische-funktion}, werden im nachfolgenden Abschnitt nochmals die Resultate
+beschrieben.
+
+\subsection{Hypergeometrische Funktion
+\label{0f1:subsection:hypergeometrisch}}
+Als Grundlage der umgesetzten Algorithmen dient die hypergeometrische Funktion $\mathstrut_0F_1$. Diese ist eine Anwendung der allgemein definierten Funktion $\mathstrut_pF_q$.
+
+\begin{definition}
+ \label{0f1:math:qFp:def}
+ Die hypergeometrische Funktion
+ $\mathstrut_pF_q$ ist definiert durch die Reihe
+ \[
+ \mathstrut_pF_q
+ \biggl(
+ \begin{matrix}
+ a_1,\dots,a_p\\
+ b_1,\dots,b_q
+ \end{matrix}
+ ;
+ x
+ \biggr)
+ =
+ \mathstrut_pF_q(a_1,\dots,a_p;b_1,\dots,b_q;x)
+ =
+ \sum_{k=0}^\infty
+ \frac{(a_1)_k\cdots(a_p)_k}{(b_1)_k\cdots(b_q)_k}\frac{x^k}{k!}.
+ \]
+\end{definition}
+
+Angewendet auf die Funktion $\mathstrut_pF_q$ ergibt sich für $\mathstrut_0F_1$:
+
+\begin{equation}
+ \label{0f1:math:0f1:eq}
+ \mathstrut_0F_1
+ \biggl(
+ \begin{matrix}
+ \\-
+ b_1
+ \end{matrix}
+ ;
+ x
+ \biggr)
+ =
+ \mathstrut_0F_1(;b_1;x)
+ =
+ \sum_{k=0}^\infty
+ \frac{x^k}{(b_1)_k \cdot k!}.
+\end{equation}
+
+
+
+
+\subsection{Airy Funktion
+\label{0f1:subsection:airy}}
+Die Funktion Ai(x) und die verwandte Funktion Bi(x) werden als Airy-Funktion bezeichnet. Sie werden zur Lösung verschiedener physikalischer Probleme benutzt, wie zum Beispiel zur Lösung der Schrödinger-Gleichung \cite{0f1:wiki-airyFunktion}.
+
+\begin{definition}
+ \label{0f1:airy:differentialgleichung:def}
+ Die Differentialgleichung
+ $y'' - xy = 0$
+ heisst die {\em Airy-Differentialgleichung}.
+\end{definition}
+
+Die Airy Funktion lässt sich auf verschiedene Arten darstellen.
+Als hypergeometrische Funktion berechnet, ergibt sich wie in Abschnitt \ref{buch:differentialgleichungen:section:hypergeometrisch} hergeleitet, folgende Lösungen der Airy-Differentialgleichung zu den Anfangsbedingungen $Ai(0)=1$ und $Ai'(0)=0$, sowie $Bi(0)=0$ und $Bi'(0)=0$.
+
+\begin{align}
+\label{0f1:airy:hypergeometrisch:eq}
+Ai(x)
+=&
+\sum_{k=0}^\infty
+\frac{1}{(\frac23)_k} \frac{1}{k!}\biggl(\frac{x^3}{9}\biggr)^k
+=
+\mathstrut_0F_1\biggl(
+\begin{matrix}\text{---}\\\frac23\end{matrix};\frac{x^3}{9}
+\biggr).
+\\
+Bi(x)
+=&
+\sum_{k=0}^\infty
+\frac{1}{(\frac43)_k} \frac{1}{k!}\biggl(\frac{x^3}{9}\biggr)^k
+=
+x\cdot\mathstrut_0F_1\biggl(
+\begin{matrix}\text{---}\\\frac43\end{matrix};
+\frac{x^3}{9}
+\biggr).
+\qedhere
+\end{align}
+
+Um die Stabilität der Algorithmen zu $\mathstrut_0F_1$ zu überprüfen, wird in diesem speziellem Fall die Airy Funktion $Ai(x)$ \eqref{0f1:airy:hypergeometrisch:eq}
+benutzt.
+
+