aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/0f1/teil2.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/0f1/teil2.tex')
-rw-r--r--buch/papers/0f1/teil2.tex57
1 files changed, 39 insertions, 18 deletions
diff --git a/buch/papers/0f1/teil2.tex b/buch/papers/0f1/teil2.tex
index ef9f55e..fdcb0fc 100644
--- a/buch/papers/0f1/teil2.tex
+++ b/buch/papers/0f1/teil2.tex
@@ -11,7 +11,7 @@ Die Unterprogramme wurde jeweils, wie die GNU Scientific Library, in C geschrieb
\subsection{Potenzreihe
\label{0f1:subsection:potenzreihe}}
-Die naheliegendste Lösung ist die Programmierung der Potenzreihe \eqref{0f1:umsetzung:0f1:eq}.
+Die naheliegendste Lösung ist die Programmierung der Potenzreihe
\begin{align}
\label{0f1:umsetzung:0f1:eq}
@@ -23,7 +23,7 @@ Die naheliegendste Lösung ist die Programmierung der Potenzreihe \eqref{0f1:ums
\frac{1}{c}
+\frac{z^1}{(c+1) \cdot 1}
+ \cdots
- + \frac{z^{20}}{c(c+1)(c+2)\cdots(c+19) \cdot 2.4 \cdot 10^{18}}
+ + \frac{z^{20}}{c(c+1)(c+2)\cdots(c+19) \cdot 2.4 \cdot 10^{18}}.
\end{align}
\lstinputlisting[style=C,float,caption={Potenzreihe.},label={0f1:listing:potenzreihe}, firstline=59]{papers/0f1/listings/potenzreihe.c}
@@ -31,44 +31,64 @@ Die naheliegendste Lösung ist die Programmierung der Potenzreihe \eqref{0f1:ums
\subsection{Kettenbruch
\label{0f1:subsection:kettenbruch}}
Eine weitere Variante zur Berechnung von $\mathstrut_0F_1(;c;z)$ ist die Umsetzung als Kettenbruch.
-Der Vorteil einer Umsetzung als Kettenbruch gegenüber der Potenzreihe, ist die schnellere Konvergenz.
+Der Vorteil einer Umsetzung als Kettenbruch gegenüber der Potenzreihe ist die schnellere Konvergenz.
+\subsubsection{Grundlage}
Ein endlicher Kettenbruch \cite{0f1:wiki-kettenbruch} ist ein Bruch der Form
\begin{equation*}
-a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{b_3}{a_3+\cdots}}}
+a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{b_3}{a_3+\cdots}}},
\end{equation*}
in welchem $a_0, a_1,\dots,a_n$ und $b_1,b_2,\dots,b_n$ ganze Zahlen sind.
-Nimmt man nun folgenden Gleichung \cite{0f1:wiki-fraction}:
+\subsubsection{Rekursionsbeziehungen und Kettenbrüche}
+Wenn es eine Relation analytischer Funktion $f_i(z)$ hat, dann gibt es einen Kettenbruch für das Verhältnis $\frac{f_i(z)}{f_{i-1}(z)}$ \cite{0f1:wiki-fraction}.
+Nimmt man die Gleichung
\begin{equation*}
f_{i-1} - f_i = k_i z f_{i+1},
\end{equation*}
wo $f_i$ analytische Funktionen sind und $i > 0$ ist, sowie $k_i$ konstant.
-Ergibt sich folgender Zusammenhang:
+Ergibt sich der Zusammenhang
\begin{equation*}
- \cfrac{f_i}{f_{i-1}} = \cfrac{1}{1+k_iz\cfrac{f_{i+1}}{f_i}}
+ \cfrac{f_i}{f_{i-1}} = \cfrac{1}{1+k_iz\cfrac{f_{i+1}}{f_i}}.
\end{equation*}
+Geht man einen Schritt weiter und nimmt für $g_i = \frac{f_i}{f_{i-1}}$ an, kommt man zur Formel
+\begin{equation*}
+ g_i = \cfrac{1}{1+k_izg_{i+1}}.
+\end{equation*}
+Setzt man dies nun für $g_1$ in den Bruch ein, ergibt sich
+\begin{equation*}
+ g_1 = \cfrac{f_1}{f_0} = \cfrac{1}{1+k_izg_2} = \cfrac{1}{1+\cfrac{k_1z}{1+k_2zg_3}} = \cdots
+\end{equation*}
+Repetiert man dies unendlich, erhält man einen Kettenbruch in der Form:
+\begin{equation}
+ \label{0f1:math:rekursion:eq}
+ \cfrac{f_1}{f_0} = \cfrac{1}{1+\cfrac{k_1z}{1+\cfrac{k_2z}{1+\cfrac{k_3z}{\cdots}}}}.
+\end{equation}
-Angewendet auf die Funktion $\mathstrut_0F_1$ bedeutet dies:
+\subsubsection{Rekursion für $\mathstrut_0F_1$}
+Angewendet auf die Potenzreihe
\begin{equation}
\label{0f1:math:potenzreihe:0f1:eq}
\mathstrut_0F_1(;c;z) = 1 + \frac{z}{c\cdot1!} + \frac{z^2}{c(c+1)\cdot2!} + \frac{z^3}{c(c+1)(c+2)\cdot3!} + \cdots
\end{equation}
-Durch Substitution kann bewiesen werden, dass die nachfolgende Formel eine Relation zur obigen Potenzreihe \eqref{0f1:math:potenzreihe:0f1:eq} ist:
+kann durch Substitution bewiesen werden, dass
\begin{equation*}
- \mathstrut_0F_1(;c-1;z) - \mathstrut_0F_1(;c;z) = \frac{z}{c(c-1)} \cdot \mathstrut_0F_1(;c+1;z).
+ \mathstrut_0F_1(;c-1;z) - \mathstrut_0F_1(;c;z) = \frac{z}{c(c-1)} \cdot \mathstrut_0F_1(;c+1;z)
\end{equation*}
-Wenn man für $f_i$ und $k_i$ folgende Annahme trifft:
+eine Relation dazu ist.
+Wenn man für $f_i$ und $k_i$ die Annahme
\begin{align*}
- f_i =& \mathstrut_0F_1(;c+1;z)\\
- k_i =& \frac{1}{(c+1)(c+i-1)}
+ f_i =& \mathstrut_0F_1(;c+i;z)\\
+ k_i =& \frac{1}{(c+i)(c+i-1)}
\end{align*}
-erhält man:
+trifft und in die Formel \eqref{0f1:math:rekursion:eq} einsetzt, erhält man:
\begin{equation*}
\cfrac{\mathstrut_0F_1(;c+1;z)}{\mathstrut_0F_1(;c;z)} = \cfrac{1}{1+\cfrac{\cfrac{z}{c(c+1)}}{1+\cfrac{\cfrac{z}{(c+1)(c+2)}}{1+\cfrac{\cfrac{z}{(c+2)(c+3)}}{\cdots}}}}.
\end{equation*}
-Mit weiteren Relationen ergibt sich nach Wolfram Alpha \cite{0f1:wolfram-0f1} folgender Kettenbruch
+\subsubsection{Algorithmus}
+Da mit obigen Formeln nur ein Verhältnis zwischen $ \frac{\mathstrut_0F_1(;c+1;z)}{\mathstrut_0F_1(;c;z)}$ berechnet wurde, braucht es weitere Relationen um $\mathstrut_0F_1(;c;z)$ zu erhalten.
+So ergeben ähnliche Relationen nach Wolfram Alpha \cite{0f1:wolfram-0f1} den Kettenbruch
\begin{equation}
\label{0f1:math:kettenbruch:0f1:eq}
\mathstrut_0F_1(;c;z) = 1 + \cfrac{\cfrac{z}{c}}{1+\cfrac{-\cfrac{z}{2(c+1)}}{1+\cfrac{z}{2(c+1)}+\cfrac{-\cfrac{z}{3(c+2)}}{1+\cfrac{z}{5(c+4)} + \cdots}}},
@@ -92,7 +112,7 @@ lässt sich zu
\cfrac{A_k}{B_k} = \cfrac{b_{k+1}}{a_{k+1} + \cfrac{p}{q}} = \frac{b_{k+1} \cdot q}{a_{k+1} \cdot q + p}
\end{align*}
umformen.
-Dies lässt sich auch durch die folgende Matrizenschreibweise ausdrücken:
+Dies lässt sich auch durch die Matrizenschreibweise
\begin{equation*}
\begin{pmatrix}
A_k\\
@@ -112,11 +132,12 @@ Dies lässt sich auch durch die folgende Matrizenschreibweise ausdrücken:
\end{pmatrix}.
%\label{0f1:math:rekursionsformel:herleitung}
\end{equation*}
+ausdrücken.
Wendet man dies nun auf den Kettenbruch in der Form
\begin{equation*}
\frac{A_k}{B_k} = a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{\cdots}{\cdots+\cfrac{b_{k-1}}{a_{k-1} + \cfrac{b_k}{a_k}}}}}
\end{equation*}
-an, ergibt sich folgende Matrixdarstellungen:
+an, ergibt sich die Matrixdarstellungen:
\begin{align*}
\begin{pmatrix}
@@ -166,7 +187,7 @@ Und schlussendlich kann der Näherungsbruch
berechnet werden.
-\subsubsection{Lösung}
+\subsubsection{Algorithmus}
Die Berechnung von $A_k, B_k$ gemäss \eqref{0f1:math:matrix:ende:eq} kann man auch ohne die Matrizenschreibweise \cite{0f1:kettenbrueche} aufschreiben:
\begin{itemize}
\item Startbedingungen: