aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/0f1/teil2.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/0f1/teil2.tex')
-rw-r--r--buch/papers/0f1/teil2.tex155
1 files changed, 129 insertions, 26 deletions
diff --git a/buch/papers/0f1/teil2.tex b/buch/papers/0f1/teil2.tex
index 07e17c0..446bc93 100644
--- a/buch/papers/0f1/teil2.tex
+++ b/buch/papers/0f1/teil2.tex
@@ -6,56 +6,158 @@
\section{Umsetzung
\label{0f1:section:teil2}}
\rhead{Umsetzung}
-Zur Umsetzung wurden drei Ansätze gewählt und
-Die Unterprogramme wurde jeweils, wie die GNU Scientific Library, in C geschrieben.
+Zur Umsetzung wurden drei verschiedene Ansätze gewählt. Dabei wurde der Schwerpunkt auf die Funktionalität und eine gute Lesbarkeit des Codes gelegt.
+Die Unterprogramme wurde jeweils, wie die GNU Scientific Library, in C geschrieben. Die Zwischenresultate wurden vom Hauptprogramm in einem CSV-File gespeichert. Anschliessen wurde mit der Matplot-Libray in Python die Resultate geplottet.
\subsection{Potenzreihe
\label{0f1:subsection:potenzreihe}}
-Die naheliegendste Lösung ist die Programmierung der Potenzreihe.
+Die naheliegendste Lösung ist die Programmierung der Potenzreihe. Allerdings ist ein Problem dieser Umsetzung \ref{0f1:listing:potenzreihe}, dass die Fakultät im Nenner schnell grosse Werte annimmt und so der Bruch gegen Null strebt. Spätesten ab $k=167$ stösst diese Umsetzung \eqref{0f1:umsetzung:0f1:eq} an ihre Grenzen, da die Fakultät von $168$ eine Bereichsüberschreitung des \textit{double} Bereiches darstellt. \cite{0f1:double}
-\begin{equation}
- \label{0f1:rekursion:hypergeometrisch:eq}
+\begin{align}
+ \label{0f1:umsetzung:0f1:eq}
\mathstrut_0F_1(;b;z)
- =
+ &=
\sum_{k=0}^\infty
\frac{z^k}{(b)_k \cdot k!}
-\end{equation}
+ &=
+ \frac{1}{b}
+ +\frac{z^1}{(1+b) \cdot 1}
+ + \cdots
+ + \frac{z^{20}}{(20+b) \cdot 2.4 \cdot 10^{18}}
+\end{align}
-\lstinputlisting[style=C,float,caption={Rekursivformel für Kettenbruch.},label={0f1:listing:potenzreihe}]{papers/0f1/listings/potenzreihe.c}
+\lstinputlisting[style=C,float,caption={Potenzreihe.},label={0f1:listing:potenzreihe}]{papers/0f1/listings/potenzreihe.c}
\subsection{Kettenbruch
\label{0f1:subsection:kettenbruch}}
Ein endlicher Kettenbruch ist ein Bruch der Form
+\begin{equation*}
+a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{b_3}{a_3+\cdots}}}
+\end{equation*}
+in welchem $a_0, a_1,\dots,a_n$ und $b_1,b_2,\dots,b_n$ ganze Zahlen darstellen.
+
+Die Kurzschreibweise für einen allgemeinen Kettenbruch ist
+\begin{equation*}
+ a_0 + \frac{a_1|}{|b_1} + \frac{a_2|}{|b_2} + \frac{a_3|}{|b_3} + \cdots
+\end{equation*}
+und ist somit verknüpfbar mit der Potenzreihe.
+\cite{0f1:wiki-kettenbruch}
+
+Angewendet auf die Funktion $\mathstrut_0F_1$ bedeutet dies:
+\begin{equation*}
+ \mathstrut_0F_1(;b;z) = 1 + \frac{z}{a1!} + \frac{z^2}{a(a+1)2!} + \frac{z^3}{a(a+1)(a+2)3!} + \cdots
+\end{equation*}
+\cite{0f1:wiki-fraction}
+
+Nach allen Umformungen ergibt sich folgender, irregulärer Kettenbruch \eqref{0f1:math:kettenbruch:0f1:eq}
\begin{equation}
-a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{\cdots}{\cdots+\cfrac{b_{n-1}}{a_{n-1} + \cfrac{b_n}{a_n}}}}}
+ \label{0f1:math:kettenbruch:0f1:eq}
+ \mathstrut_0F_1(;b;z) = 1 + \cfrac{\cfrac{z}{b}}{1+\cfrac{-\cfrac{z}{2(1+b)}}{1+\cfrac{z}{2(1+b)}+\cfrac{-\cfrac{z}{3(2+b)}}{1+\cfrac{z}{5(4+b)} + \cdots}}},
\end{equation}
-in welchem $a_0, a_1,\dots,a_n$ und $b_1,b_2,\dots,b_n$ ganze Zahlen
-darstellen.
+der als Code \ref{0f1:listing:kettenbruchIterativ} umgesetzt wurde.
+\cite{0f1:wolfram-0f1}
-{\color{red}TODO: Bessere Beschreibung mit Verknüpfung zur Potenzreihe}
+\lstinputlisting[style=C,float,caption={Rekursionsformel für Kettenbruch.},label={0f1:listing:kettenbruchIterativ}]{papers/0f1/listings/kettenbruchIterativ.c}
-%Gauss hat durch
-
-\lstinputlisting[style=C,float,caption={Rekursivformel für Kettenbruch.},label={0f1:listing:kettenbruchIterativ}]{papers/0f1/listings/kettenbruchIterativ.c}
\subsection{Rekursionsformel
\label{0f1:subsection:rekursionsformel}}
-Wesentlich effizienter zur Berechnung eines Kettenbruches ist die Rekursionsformel.
+Wesentlich stabiler zur Berechnung eines Kettenbruches ist die Rekursionsformel. Nachfolgend wird die verkürzte Herleitung vom Kettenbruch zur Rekursionsformel aufgezeigt. Eine vollständige Schritt für Schritt Herleitung ist im Seminarbuch Numerik, im Kapitel Kettenbrüche zu finden. \cite{0f1:kettenbrueche})
+
+\subsubsection{Verkürzte Herleitung}
+Ein Näherungsbruch in der Form
+\begin{align*}
+ \cfrac{A_k}{B_k} = a_k + \cfrac{b_{k + 1}}{a_{k + 1} + \cfrac{p}{q}}
+\end{align*}
+lässt sich zu
+\begin{align*}
+ \cfrac{A_k}{B_k} = \cfrac{b_{k+1}}{a_{k+1} + \cfrac{p}{q}} = \frac{b_{k+1} \cdot q}{a_{k+1} \cdot q + p}
+\end{align*}
+umformen.
+Dies lässt sich auch durch die folgende Matrizenschreibweise ausdrücken:
+\begin{equation*}
+ \begin{pmatrix}
+ A_k\\
+ B_k
+ \end{pmatrix}
+ = \begin{pmatrix}
+ b_{k+1} \cdot q\\
+ a_{k+1} \cdot q + p
+ \end{pmatrix}
+ =\begin{pmatrix}
+ 0& b_{k+1}\\
+ 1& a_{k+1}
+ \end{pmatrix}
+ \begin{pmatrix}
+ p \\
+ q
+ \end{pmatrix}.
+ %\label{0f1:math:rekursionsformel:herleitung}
+\end{equation*}
+
+Wendet man dies nun auf den Kettenbruch in der Form
+\begin{equation*}
+ \frac{A_k}{B_k} = a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{\cdots}{\cdots+\cfrac{b_{k-1}}{a_{k-1} + \cfrac{b_k}{a_k}}}}}
+\end{equation*}
+an, ergibt sich folgende Matrixdarstellungen:
\begin{align*}
-\frac{A_n}{B_n}
-=
-a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{\cdots}{\cdots+\cfrac{b_{n-1}}{a_{n-1} + \cfrac{b_n}{a_n}}}}}
+ \begin{pmatrix}
+ A_k\\
+ B_k
+ \end{pmatrix}
+ &=
+ \begin{pmatrix}
+ 1& a_0\\
+ 0& 1
+ \end{pmatrix}
+ \begin{pmatrix}
+ 0& b_1\\
+ 1& a_1
+ \end{pmatrix}
+ \cdots
+ \begin{pmatrix}
+ 0& b_{k-1}\\
+ 1& a_{k-1}
+ \end{pmatrix}
+ \begin{pmatrix}
+ b_k\\
+ a_k
+ \end{pmatrix}
\end{align*}
-Die Berechnung von $A_n, B_n$ kann man auch ohne die Matrizenschreibweise
-aufschreiben:
+Nach vollständiger Induktion ergibt sich für den Schritt $k$, die Matrix
+\begin{equation}
+ \label{0f1:math:matrix:ende:eq}
+ \begin{pmatrix}
+ A_{k}\\
+ B_{k}
+ \end{pmatrix}
+ =
+ \begin{pmatrix}
+ A_{k-2}& A_{k-1}\\
+ B_{k-2}& B_{k-1}
+ \end{pmatrix}
+ \begin{pmatrix}
+ b_k\\
+ a_k
+ \end{pmatrix}.
+\end{equation}
+
+Und Schlussendlich kann der Näherungsbruch
+\[
+\frac{Ak}{Bk}
+\]
+berechnet werden.
+
+
+\subsubsection{Lösung}
+Die Berechnung von $A_k, B_k$ \eqref{0f1:math:matrix:ende:eq} kann man auch ohne die Matrizenschreibweise aufschreiben: \cite{0f1:wiki-fraction}
\begin{itemize}
-\item Start:
+\item Startbedingungen:
\begin{align*}
A_{-1} &= 0 & A_0 &= a_0 \\
B_{-1} &= 1 & B_0 &= 1
\end{align*}
-$\rightarrow$ 0-te Näherung: $\displaystyle\frac{A_0}{B_0} = a_0$
\item Schritt $k\to k+1$:
\[
\begin{aligned}
@@ -67,9 +169,10 @@ B_{k+1} &= B_{k-1} \cdot b_k + B_k \cdot a_k
\end{aligned}
\]
\item
-Näherungsbruch $n$: \qquad$\displaystyle\frac{A_n}{B_n}$
+Näherungsbruch: \qquad$\displaystyle\frac{A_k}{B_k}$
\end{itemize}
-{\color{red}TODO: Verweis Numerik}
+Ein grosser Vorteil dieser Umsetzung \ref{0f1:listing:kettenbruchRekursion} ist, dass im Vergleich zum Code \ref{0f1:listing:kettenbruchIterativ} eine Division gespart werden kann und somit weniger Folgefehler entstehen können.
-\lstinputlisting[style=C,float,caption={Rekursivformel für Kettenbruch.},label={0f1:listing:kettenbruchRekursion}]{papers/0f1/listings/kettenbruchRekursion.c} \ No newline at end of file
+%Code
+\lstinputlisting[style=C,float,caption={Iterativ umgesetzter Kettenbruch.},label={0f1:listing:kettenbruchRekursion}]{papers/0f1/listings/kettenbruchRekursion.c} \ No newline at end of file