aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/ellfilter/elliptic.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/ellfilter/elliptic.tex')
-rw-r--r--buch/papers/ellfilter/elliptic.tex78
1 files changed, 55 insertions, 23 deletions
diff --git a/buch/papers/ellfilter/elliptic.tex b/buch/papers/ellfilter/elliptic.tex
index 67bcca0..81821c1 100644
--- a/buch/papers/ellfilter/elliptic.tex
+++ b/buch/papers/ellfilter/elliptic.tex
@@ -1,13 +1,16 @@
-\section{Elliptische rationale Funktionen}
+\section{Rationale elliptische Funktionen}
-Kommen wir nun zum eigentlichen Teil dieses Papers, den elliptischen rationalen Funktionen \cite{ellfilter:bib:orfanidis}
+Kommen wir nun zum eigentlichen Teil dieses Papers, den rationalen elliptischen Funktionen \cite{ellfilter:bib:orfanidis}
\begin{align}
R_N(\xi, w) &= \cd \left(N~f_1(\xi)~\cd^{-1}(w, 1/\xi), f_2(\xi)\right) \label{ellfilter:eq:elliptic}\\
&= \cd \left(N~\frac{K_1}{K}~\cd^{-1}(w, k), k_1\right) , \quad k= 1/\xi, k_1 = 1/f(\xi) \\
&= \cd \left(N~K_1~z , k_1 \right), \quad w= \cd(z K, k)
\end{align}
Beim Betrachten dieser Definition, fällt die Ähnlichkeit zur trigonometrische Darstellung der Tsche\-byschef-Polynome \eqref{ellfilter:eq:chebychef_polynomials} auf.
-Anstelle vom Kosinus kommt hier die $\cd$-Funktion zum Einsatz.
+Wie bei den Tschebyscheff-Polynomen ist die Formel mit speziellen Funktionen geschrieben.
+Es kann jedoch gezeigt werden, dass es sich tatsächlich um rationale Funktionen handelt, wie es für ein lineares Filter vorausgesetzt wird.
+Die elliptischen Funktionen werden also genau so eingesetzt, dass die resultierenden Nullstellen und Pole eine rationale Funktion ergeben.
+Anstelle des Kosinus bei den Tschebyscheff-Polynomen kommt hier die $\cd$-Funktion zum Einsatz.
Die Ordnungszahl $N$ kommt auch als Faktor for.
Zusätzlich werden noch zwei verschiedene elliptische Moduli $k$ und $k_1$ gebraucht.
Bei $k = k_1 = 0$ wird der $\cd$ zum Kosinus und wir erhalten in diesem Spezialfall die Tschebyschef-Polynome.
@@ -24,12 +27,12 @@ Die $\cd^{-1}(w, k)$-Funktion ist um $K$ verschoben zur $\sn^{-1}(w, k)$-Funktio
\label{ellfilter:fig:cd}
\end{figure}
Auffallend an der $w = \cd(z, k)$-Funktion ist, dass sich $w$ auf der reellen Achse wie der Kosinus immer zwischen $-1$ und $1$ bewegt, während bei $\mathrm{Im(z) = K^\prime}$ die Werte zwischen $\pm 1/k$ und $\pm \infty$ verlaufen.
-Die Idee des elliptischen Filter ist es, diese zwei Equirippel-Zonen abzufahren, wie ersichtlich in Abbildung \ref{ellfilter:fig:cd2}, welche Analog zu Abbildung \ref{ellfilter:fig:arccos2} gesehen werden kann.
+Die Idee des elliptischen Filter ist es, diese zwei Equiripple-Zonen abzufahren, wie ersichtlich in Abbildung \ref{ellfilter:fig:cd2}, welche analog zu Abbildung \ref{ellfilter:fig:arccos2} gesehen werden kann.
\begin{figure}
\centering
\input{papers/ellfilter/tikz/cd2.tikz.tex}
\caption{
- $z_1=N\frac{K_1}{K}\cd^{-1}(w, k)$-Ebene der elliptischen rationalen Funktionen.
+ $z_1=N\frac{K_1}{K}\cd^{-1}(w, k)$-Ebene der rationalen elliptischen Funktionen.
Je grösser die Ordnung $N$ gewählt wird, desto mehr Nullstellen werden passiert.
Als Vereinfachung ist die Funktion nur für $w>0$ dargestellt.
}
@@ -37,13 +40,10 @@ Die Idee des elliptischen Filter ist es, diese zwei Equirippel-Zonen abzufahren,
\end{figure}
Das elliptische Filter hat im Gegensatz zum Tschebyscheff-Filter drei Zonen.
Im Durchlassbereich werden wie beim Tschebyscheff-Filter die Nullstellen durchlaufen.
-Statt dass $z_1$ für alle $w>1$ in die imaginäre Richtung geht, bewegen wir uns im Sperrbereich wieder in reeller Richtung, wo Pole durchlaufen werden.
+Statt dass $z_1$ für alle $w>1$ in die imaginäre Richtung geht, bewegen wir uns im Sperrbereich wieder in reeller Richtung, wo Pole und Punkte mit $\pm 1/k$ durchlaufen werden.
Aus dieser Sicht kann der Sperrbereich vom Tschebyscheff-Filter als unendlich langer Übergangsbereich angesehen werden.
-% Falls es möglich ist diese Werte abzufahren im Stil der Tschebyscheff-Polynome, kann ein Filter gebaut werden, dass Equirippel-Verhalten im Durchlass- und Sperrbereich aufweist.
-Da sich die Funktion im Übergangsbereich nur zur nächsten Reihe bewegt, ist der Übergangsbereich monoton steigend.
-Theoretisch könnte eine gleiches Durchlass- und Sperrbereichverhalten erreicht werden, wenn die Funktion auf eine andere Reihe ansteigen würde.
-Dies würde jedoch zu Oszillationen zwischen $1$ und $1/k$ im Übergangsbereich führen.
-Abbildung \ref{ellfilter:fig:elliptic_freq} zeigt eine elliptisch rationale Funktion und die Frequenzantwort des daraus resultierenden Filters.
+% Falls es möglich ist diese Werte abzufahren im Stil der Tschebyscheff-Polynome, kann ein Filter gebaut werden, dass Equiripple-Verhalten im Durchlass- und Sperrbereich aufweist.
+Abbildung \ref{ellfilter:fig:elliptic_freq} zeigt eine rationale elliptische Funktion und die Frequenzantwort des daraus resultierenden Filters.
\begin{figure}
\centering
\input{papers/ellfilter/python/elliptic.pgf}
@@ -51,6 +51,10 @@ Abbildung \ref{ellfilter:fig:elliptic_freq} zeigt eine elliptisch rationale Funk
\label{ellfilter:fig:elliptic_freq}
\end{figure}
+Da sich die Funktion im Übergangsbereich nur zur nächsten Reihe von Polstellen bewegt, ist der Übergangsbereich monoton steigend.
+Theoretisch könnte eine gleiches Durchlass- und Sperrbereichsverhalten erreicht werden, wenn die Funktion auf eine andere Reihe ansteigen würde.
+Dies würde jedoch zu Oszillationen zwischen $1$ und $1/k$ im Übergangsbereich führen.
+
\subsection{Gradgleichung}
Damit die Pol- und Nullstellen genau in dieser Konstellation durchfahren werden, müssen die elliptischen Moduli des inneren und äusseren $\cd$ aufeinander abgestimmt werden.
@@ -75,26 +79,54 @@ Algebraisch kann so die Gradgleichung
N \frac{K^\prime}{K} = \frac{K^\prime_1}{K_1}
\end{equation}
aufgestellt werden, dessen Lösung ist gegeben durch
-\begin{equation} %TODO check
+\begin{equation}\label{ellfilter:eq:degeqsol}
k_1 = k^N \prod_{i=1}^L \sn^4 \Bigg( \frac{2i - 1}{N} K, k \Bigg),
\quad \text{wobei} \quad
N = 2L+r.
\end{equation}
Die Herleitung ist sehr umfassend und wird in \cite{ellfilter:bib:orfanidis} im Detail angeschaut.
-% \begin{figure}
-% \centering
-% \input{papers/ellfilter/tikz/elliptic_transform1.tikz}
-% \caption{Die Gradgleichung als geometrisches Problem.}
-% \end{figure}
+\subsection{Berechnung der rationalen Funktion}
-\subsection{Schlussfolgerung}
+$k_1$ muss jedoch gar nicht berechnet werden, um $R_N$ in der Form einer rationale Funktion erhalten.
+Die Ordnung $N$ und der Parameter $k$ können frei gewählt werden.
+% $k_1$ muss dann mit \eqref{ellfilter:eq:degeqsol} oder mit numerischen Methoden berechnet werden.
+Je kleiner $k$ gewählt wird, desto grösser wird die Dämpfung des Filters im Sperrbereich im Verhältnis zum Durchlassbereich.
+Allerdings verliert das Filter dabei auch an Steilheit.
+Wenn $k$ und $N$ bekannt sind, können die Position der Pol- und Nullstellen $p_i$ und $n_i$ in einem Raster konstruiert werden, wie dargestellt in Abbildung \ref{ellfilter:fig:pn}.
+\begin{figure}
+ \centering
+ \input{papers/ellfilter/tikz/pn.tikz.tex}
+ \caption{
+ Pole und Nullstellen in der $z = \cd^{-1}(w, k)$-Ebene für die Rücktransformation zur einer rationalen Funktion.
+ }
+ \label{ellfilter:fig:pn}
+\end{figure}
+Dabei muss aufgepasst werden, dass insgesamt nur $N$ Nullstellen und $N$ Pole gesetzt werden, da bei der transformation mit dem $\cd$ mehrere Werte auf einen abgebildet werden und mehrfache Pole und Nullstellen nicht erwünscht sind.
+Wegen der Periodizität sind diese in der komplexen $z$-Ebene linear angeordnet:
+\begin{align}
+ n_i(k) &= K\frac{2i+1}{N} \\
+ p_i(k) &= n_i + jK^\prime.
+\end{align}
+Durch das Rücktransformieren mit der $\cd$-Funktion gelangt man schlussendlich zu der rationalen Funktion
+\begin{equation}
+ R_N(w, k) = r_0 \prod_{i=1}^N \frac{w - \cd \big(n_i(k), k \big)}{w - \cd \big(p_i(k), k \big)},
+\end{equation}
+wobei $r_0$ so gewählt werden muss, dass $R_N(w, k) = 1$.
-Die elliptischen Filter können als direkte Erweiterung der Tschebyscheff-Filter verstanden werden.
-Bei den Tschebyscheff-Polynomen haben wir gesehen, dass die Trigonometrische Formel zu einfachen Polynomen umgewandelt werden kann.
-Im elliptischen Fall entstehen so rationale Funktionen mit Nullstellen und auch Pole.
-Somit entstehen bei den elliptischen rationalen Funktionen, wie es der name auch deutet, rationale Funktionen, also ein Bruch von zwei Polynomen.
+\section{Elliptisches Filter}
-% Da Transformationen einer rationalen Funktionen mit Grundrechenarten, wie es in \eqref{ellfilter:eq:h_omega} der Fall ist, immer noch rationale Funktionen ergeben, stellt dies kein Problem für die Implementierung dar.
+Um ein elliptisches Filter auszulegen werden aber nicht die Pol- und Nullstellen der rationalen Funktion gebraucht, sondern diejenigen der Übertragungsfunktion $H(s)$ der komplexen Frequenz $s = j\Omega + \sigma$.
+Der Bezug zum quadratischen Amplitudengang \eqref{ellfilter:eq:quadratic_transfer} ist dabei
+\begin{equation}
+ |H(\Omega)|^2 = H(s) H(s^*),
+\end{equation}
+wobei $*$ die komplexe Konjugation kennzeichnet.
+Die genaue Berechnung geht einiges tiefer in die Filtertheorie, und verlässt das Gebiet der speziellen Funktionen.
+Der interessierte Leser wird auf \cite[Kapitel~5]{ellfilter:bib:orfanidis} verwiesen.
+% \subsection{Schlussfolgerung}
+% Die elliptischen Filter können als direkte Erweiterung der Tschebyscheff-Filter verstanden werden.
+% Bei den Tschebyscheff-Polynomen haben wir gesehen, dass die Trigonometrische Formel zu einfachen Polynomen umgewandelt werden kann.
+% Im elliptischen Fall entstehen so rationale Funktionen mit Nullstellen und auch Pole.