aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/ellfilter/jacobi.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/ellfilter/jacobi.tex')
-rw-r--r--buch/papers/ellfilter/jacobi.tex36
1 files changed, 4 insertions, 32 deletions
diff --git a/buch/papers/ellfilter/jacobi.tex b/buch/papers/ellfilter/jacobi.tex
index 841cd7d..06548a5 100644
--- a/buch/papers/ellfilter/jacobi.tex
+++ b/buch/papers/ellfilter/jacobi.tex
@@ -1,6 +1,6 @@
\section{Jacobische elliptische Funktionen}
-Für das elliptische Filter werden, wie es der Name bereits deutet, elliptische Funktionen gebraucht.
+Für das elliptische Filter werden, wie es der Name bereits andeutet, elliptische Funktionen gebraucht.
Wie die trigonometrischen Funktionen Zusammenhänge eines Kreises darlegen, beschreiben die elliptischen Funktionen Ellipsen.
Es ist daher naheliegend, dass der Kosinus des Tschebyscheff-Filters gegen ein elliptisches Pendant ausgetauscht werden könnte.
Der Begriff elliptische Funktion wird für sehr viele Funktionen gebraucht, daher ist es hier wichtig zu erwähnen, dass es hier ausschliesslich um die Jacobischen elliptischen Funktionen geht.
@@ -32,7 +32,7 @@ Das Winkelargument $z$ kann durch das elliptische Integral erster Art
\end{equation}
mit dem Winkel $\phi$ in Verbindung gebracht werden.
-Dabei wird das vollständige und unvollständige elliptische integral unterschieden.
+Dabei wird das vollständige und unvollständige elliptische Integral unterschieden.
Beim vollständigen Integral
\begin{equation}
K(k)
@@ -46,7 +46,7 @@ Beim vollständigen Integral
}
}
\end{equation}
-wird über ein viertel Ellipsenbogen integriert, also bis $\phi=\pi/2$ und liefert das Winkelargument für eine Vierteldrehung.
+wird über ein Viertelellipsenbogen integriert, also bis $\phi=\pi/2$ und liefert das Winkelargument für eine Vierteldrehung.
Die Zahl wird oft auch abgekürzt mit $K = K(k)$ und ist für das elliptische Filter sehr relevant.
Alle elliptischen Funktionen sind somit $4K$-periodisch.
@@ -89,38 +89,10 @@ Mithilfe von $F^{-1}$ kann zum Beispiel $sn^{-1}$ mit dem elliptischen Integral
w.
\end{equation}
-% \begin{equation} %TODO remove unnecessary equations
-% \phi
-% =
-% F^{-1}(z, k)
-% =
-% \sin^{-1} \big( \sn (z, k ) \big)
-% =
-% \sin^{-1} ( w )
-% \end{equation}
-
-% \begin{equation}
-% F(\phi, k)
-% =
-% z
-% =
-% F( \sin^{-1} \big( \sn (z, k ) \big) , k)
-% =
-% F( \sin^{-1} ( w ), k)
-% \end{equation}
-
-% \begin{equation}
-% \sn^{-1}(w, k)
-% =
-% F(\phi, k),
-% \quad
-% \phi = \sin^{-1}(w)
-% \end{equation}
-
\subsection{Die Funktion $\sn^{-1}$}
Beim Tschebyscheff-Filter konnten wir mit Betrachten des Arcuscosinus die Funktionalität erklären.
-Für das Elliptische Filter machen wir die gleiche Betrachtung mit der $\sn^{-1}$-Funktion.
+Für das elliptische Filter machen wir die gleiche Betrachtung mit der $\sn^{-1}$-Funktion.
Der $\sn^{-1}$ ist durch das elliptische Integral
\begin{align}
\sn^{-1}(w, k)