aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/ellfilter/jacobi.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/ellfilter/jacobi.tex')
-rw-r--r--buch/papers/ellfilter/jacobi.tex73
1 files changed, 43 insertions, 30 deletions
diff --git a/buch/papers/ellfilter/jacobi.tex b/buch/papers/ellfilter/jacobi.tex
index 3940171..fae6b31 100644
--- a/buch/papers/ellfilter/jacobi.tex
+++ b/buch/papers/ellfilter/jacobi.tex
@@ -13,7 +13,7 @@ Zum Beispiel gibt es analog zum Sinus den elliptischen $\sn(z, k)$.
Im Gegensatz zum den trigonometrischen Funktionen haben die elliptischen Funktionen zwei parameter.
Den \textit{elliptische Modul} $k$, der die Exzentrizität der Ellipse parametrisiert und das Winkelargument $z$.
Im Kreis ist der Radius für alle Winkel konstant, bei Ellipsen ändert sich das.
-Dies hat zur Folge, dass bei einer Ellipse die Kreisbodenstrecke nicht linear zum Winkel verläuft.
+Dies hat zur Folge, dass bei einer Ellipse die Kreisbogenlänge nicht linear zum Winkel verläuft.
Darum kann hier nicht der gewohnte Winkel verwendet werden.
Das Winkelargument $z$ kann durch das elliptische Integral erster Art
\begin{equation}
@@ -95,37 +95,40 @@ Mithilfe von $F^{-1}$ kann zum Beispiel $sn^{-1}$ mit dem Elliptischen integral
=
\sn(z, k)
=
- w
+ w.
\end{equation}
-\begin{equation} %TODO remove unnecessary equations
- \phi
- =
- F^{-1}(z, k)
- =
- \sin^{-1} \big( \sn (z, k ) \big)
- =
- \sin^{-1} ( w )
-\end{equation}
+% \begin{equation} %TODO remove unnecessary equations
+% \phi
+% =
+% F^{-1}(z, k)
+% =
+% \sin^{-1} \big( \sn (z, k ) \big)
+% =
+% \sin^{-1} ( w )
+% \end{equation}
-\begin{equation}
- F(\phi, k)
- =
- z
- =
- F( \sin^{-1} \big( \sn (z, k ) \big) , k)
- =
- F( \sin^{-1} ( w ), k)
-\end{equation}
+% \begin{equation}
+% F(\phi, k)
+% =
+% z
+% =
+% F( \sin^{-1} \big( \sn (z, k ) \big) , k)
+% =
+% F( \sin^{-1} ( w ), k)
+% \end{equation}
-\begin{equation}
- \sn^{-1}(w, k)
- =
- F(\phi, k),
- \quad
- \phi = \sin^{-1}(w)
-\end{equation}
+% \begin{equation}
+% \sn^{-1}(w, k)
+% =
+% F(\phi, k),
+% \quad
+% \phi = \sin^{-1}(w)
+% \end{equation}
+Beim Tschebyscheff-Filter konnten wir mit Betrachten des Arcuscosinus die Funktionalität erklären.
+Für das Elliptische Filter machen wir die gleiche Betrachtung mit der $\sn^{-1}$-Funktion.
+Der $\sn^{-1}$ ist durch das elliptische Integral
\begin{align}
\sn^{-1}(w, k)
& =
@@ -150,12 +153,22 @@ Mithilfe von $F^{-1}$ kann zum Beispiel $sn^{-1}$ mit dem Elliptischen integral
}
}
\end{align}
-
+beschrieben.
+Dazu betrachten wir wieder den Integranden
+\begin{equation}
+ \frac{
+ 1
+ }{
+ \sqrt{
+ (1-t^2)(1-k^2 t^2)
+ }
+ }.
+\end{equation}
Beim $\cos^{-1}(x)$ haben wir gesehen, dass die analytische Fortsetzung bei $x < -1$ und $x > 1$ rechtwinklig in die Komplexen zahlen wandert.
-Wenn man das gleiche mit $\sn^{-1}(w, k)$ macht, erkennt man zwei interessante Stellen.
+Wenn man das Gleiche mit $\sn^{-1}(w, k)$ macht, erkennt man zwei interessante Stellen.
Die erste ist die gleiche wie beim $\cos^{-1}(x)$ nämlich bei $t = \pm 1$.
Der erste Term unter der Wurzel wird dann negativ, während der zweite noch positiv ist, da $k \leq 1$.
-Ab diesem Punkt verläuft knickt die Funktion in die imaginäre Richtung ab.
+Ab diesem Punkt knickt die Funktion in die imaginäre Richtung ab.
Bei $t = 1/k$ ist auch der zweite Term negativ und die Funktion verläuft in die negative reelle Richtung.
Abbildung \label{ellfilter:fig:sn} zeigt den Verlauf der Funktion in der komplexen Ebene.
\begin{figure}