aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/ellfilter/tschebyscheff.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/ellfilter/tschebyscheff.tex')
-rw-r--r--buch/papers/ellfilter/tschebyscheff.tex8
1 files changed, 4 insertions, 4 deletions
diff --git a/buch/papers/ellfilter/tschebyscheff.tex b/buch/papers/ellfilter/tschebyscheff.tex
index 327c5e7..84095a7 100644
--- a/buch/papers/ellfilter/tschebyscheff.tex
+++ b/buch/papers/ellfilter/tschebyscheff.tex
@@ -3,17 +3,17 @@
Als Einstieg betrachten wir das Tschebyscheff-Filter, welches sehr verwandt ist mit dem elliptischen Filter.
Genauer ausgedrückt erhält man die Tschebyscheff-1 und -2 Filter bei Grenzwerten von Parametern beim elliptischen Filter.
Der Name des Filters deutet schon an, dass die Tschebyscheff-Polynome $T_N$ (siehe auch Kapitel \ref{buch:polynome:section:tschebyscheff}) für das Filter relevant sind:
-\begin{align}
+\begin{align*}
T_{0}(x)&=1\\
T_{1}(x)&=x\\
T_{2}(x)&=2x^{2}-1\\
T_{3}(x)&=4x^{3}-3x\\
T_{n+1}(x)&=2x~T_{n}(x)-T_{n-1}(x).
-\end{align}
+\end{align*}
Bemerkenswert ist, dass die Polynome im Intervall $[-1, 1]$ mit der trigonometrischen Funktion
\begin{align} \label{ellfilter:eq:chebychef_polynomials}
T_N(w) &= \cos \left( N \cos^{-1}(w) \right) \\
- &= \cos \left(N~z \right), \quad w= \cos(z)
+ &= \cos \left(N~z \right), \quad w= \cos(z) \label{ellfilter:eq:chebychef_polynomials2}
\end{align}
übereinstimmen.
Der Zusammenhang lässt sich mit den Doppel- und Mehrfachwinkelfunktionen der trigonometrischen Funktionen erklären.
@@ -90,7 +90,7 @@ Das gleiche Muster kommt daher periodisch vor.
Das Einzeichnen von Pol- und Nullstellen ist hilfreich für die Betrachtung der Funktion.
-In \eqref{ellfilter:eq:chebychef_polynomials} wird $z$ mit dem Ordnungsfaktor $N$ multipliziert und durch die Kosinusfunktion zurück transformiert.
+In \eqref{ellfilter:eq:chebychef_polynomials2} wird $z$ mit dem Ordnungsfaktor $N$ multipliziert und durch die Kosinusfunktion zurück transformiert.
Die Skalierung hat zur Folge, dass bei der Rücktransformation durch den Kosinus mehrere Nullstellen durchlaufen werden.
Somit passiert $\cos \big( N~\cos^{-1}(w) \big)$ im Intervall $[-1, 1]$ $N$ Nullstellen, wie dargestellt in Abbildung \ref{ellfilter:fig:arccos2}.
\begin{figure}