aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/fm/00_modulation.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/fm/00_modulation.tex')
-rw-r--r--buch/papers/fm/00_modulation.tex28
1 files changed, 28 insertions, 0 deletions
diff --git a/buch/papers/fm/00_modulation.tex b/buch/papers/fm/00_modulation.tex
new file mode 100644
index 0000000..dc99b40
--- /dev/null
+++ b/buch/papers/fm/00_modulation.tex
@@ -0,0 +1,28 @@
+%
+% teil3.tex -- Beispiel-File für Teil 3
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\subsection{Modulationsarten\label{fm:section:modulation}}
+
+Das sinusförmige Trägersignal hat die übliche Form:
+\(x_c(t) = A_c \cdot \cos(\omega_c(t)+\varphi)\).
+Wobei die konstanten Amplitude \(A_c\) und Phase \(\varphi\) vom Nachrichtensignal \(m(t)\) verändert wird.
+Der Parameter \(\omega_c\), die Trägerkreisfrequenz bzw. die Trägerfrequenz \(f_c = \frac{\omega_c}{2\pi}\),
+steht nicht für die modulation zur verfügung, statt dessen kann durch ihn die Frequenzachse frei gewählt werden.
+\newblockpunct
+Jedoch ist das für die Vielfalt der Modulationsarten keine Einschrenkung.
+Ein Nachrichtensignal kann auch über die Momentanfrequenz (instantenous frequency) \(\omega_i\) eines trägers verändert werden.
+Mathematisch wird dann daraus
+\[
+ \omega_i = \omega_c + \frac{d \varphi(t)}{dt}
+\]
+mit der Ableitung der Phase\cite{fm:NAT}.
+Mit diesen drei parameter ergeben sich auch drei modulationsarten, die Amplitudenmodulation welche \(A_c\) benutzt,
+die Phasenmodulation \(\varphi\) und dann noch die Momentankreisfrequenz \(\omega_i\):
+\newline
+\newline
+To do: Bilder jeder Modulationsart
+
+
+