aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/fm/00_modulation.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/fm/00_modulation.tex')
-rw-r--r--buch/papers/fm/00_modulation.tex27
1 files changed, 22 insertions, 5 deletions
diff --git a/buch/papers/fm/00_modulation.tex b/buch/papers/fm/00_modulation.tex
index dc99b40..982d63c 100644
--- a/buch/papers/fm/00_modulation.tex
+++ b/buch/papers/fm/00_modulation.tex
@@ -3,11 +3,22 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
+
+Durch die Modulation wird ein Nachrichtensignal \(m(t)\) auf ein Trägersignal (z.B. ein Sinus- oder Rechtecksignal) abgebildet (kombiniert).
+Durch dieses Auftragen vom Nachrichtensignal \(m(t)\) kann das modulierte Signal in einem gewünschten Frequenzbereich übertragen werden.
+Der ursprünglich Frequenzbereich des Nachrichtensignal \(m(t)\) erstreckt sich typischerweise von 0 Hz bis zur Bandbreite \(B_m\).
+Beim Empfänger wird dann durch Demodulation das ursprüngliche Nachrichtensignal \(m(t)\) so originalgetreu wie möglich zurückgewonnen.
+Beim Trägersignal \(x_c(t)\) handelt es sich um ein informationsloses Hilfssignal.
+Durch die Modulation mit dem Nachrichtensignal \(m(t)\) wird es zum modulierten zu übertragenden Signal.
+Für alle Erklärungen wird ein sinusförmiges Trägersignal benutzt, jedoch kann auch ein Rechtecksignal,
+welches Digital einfach umzusetzten ist,
+genauso als Trägersignal genutzt werden kann.\cite{fm:NAT}
+
\subsection{Modulationsarten\label{fm:section:modulation}}
Das sinusförmige Trägersignal hat die übliche Form:
\(x_c(t) = A_c \cdot \cos(\omega_c(t)+\varphi)\).
-Wobei die konstanten Amplitude \(A_c\) und Phase \(\varphi\) vom Nachrichtensignal \(m(t)\) verändert wird.
+Wobei die konstanten Amplitude \(A_c\) und Phase \(\varphi\) vom Nachrichtensignal \(m(t)\) verändert werden können.
Der Parameter \(\omega_c\), die Trägerkreisfrequenz bzw. die Trägerfrequenz \(f_c = \frac{\omega_c}{2\pi}\),
steht nicht für die modulation zur verfügung, statt dessen kann durch ihn die Frequenzachse frei gewählt werden.
\newblockpunct
@@ -18,10 +29,16 @@ Mathematisch wird dann daraus
\omega_i = \omega_c + \frac{d \varphi(t)}{dt}
\]
mit der Ableitung der Phase\cite{fm:NAT}.
-Mit diesen drei parameter ergeben sich auch drei modulationsarten, die Amplitudenmodulation welche \(A_c\) benutzt,
-die Phasenmodulation \(\varphi\) und dann noch die Momentankreisfrequenz \(\omega_i\):
-\newline
-\newline
+Mit diesen drei Parameter ergeben sich auch drei Modulationsarten, die Amplitudenmodulation, welche \(A_c\) benutzt,
+die Phasenmodulation \(\varphi\) und dann noch die Momentankreisfrequenz \(\omega_i\):
+\begin{itemize}
+ \item AM
+ \item PM
+ \item FM
+\end{itemize}
+Um modulation zu Verstehen ist es am Anschaulichst mit der AM Amplitudenmodulation,
+da Phasenmodulation und Frequenzmodulation den gleichen Parameter verändert vernachlässige ich die Phasenmodulation ganz.
+
To do: Bilder jeder Modulationsart