aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/fm/03_bessel.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/fm/03_bessel.tex')
-rw-r--r--buch/papers/fm/03_bessel.tex218
1 files changed, 200 insertions, 18 deletions
diff --git a/buch/papers/fm/03_bessel.tex b/buch/papers/fm/03_bessel.tex
index fdaa0d1..5f85dc6 100644
--- a/buch/papers/fm/03_bessel.tex
+++ b/buch/papers/fm/03_bessel.tex
@@ -3,26 +3,208 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\section{FM und Besselfunktion
-\label{fm:section:teil2}}
-\rhead{Teil 2}
+\section{FM und Bessel-Funktion
+\label{fm:section:proof}}
+\rhead{Herleitung}
+Die momentane Trägerkreisfrequenz \(\omega_i\), wie schon in (ref) beschrieben ist, bringt die Ableitung \(\frac{d \varphi(t)}{dt}\) mit sich.
+Diese wiederum kann durch \(\beta\sin(\omega_mt)\) ausgedrückt werden, wobei es das modulierende Signal \(m(t)\) ist.
+Somit haben wir unser \(x_c\) welches
+\[
+\cos(\omega_c t+\beta\sin(\omega_mt))
+\]
+ist.
+\subsection{Herleitung}
+Das Ziel ist, unser moduliertes Signal mit der Bessel-Funktion so auszudrücken:
+\begin{align}
+ x_c(t)
+ =
+ \cos(\omega_ct+\beta\sin(\omega_mt))
+ &=
+ \sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omega_m)t)
+ \label{fm:eq:proof}
+\end{align}
+
+\subsubsection{Hilfsmittel}
+Doch dazu brauchen wir die Hilfe der Additionsthoerme
+\begin{align}
+ \cos(A + B)
+ &=
+ \cos(A)\cos(B)-\sin(A)\sin(B)
+ \label{fm:eq:addth1}
+ \\
+ 2\cos (A)\cos (B)
+ &=
+ \cos(A-B)+\cos(A+B)
+ \label{fm:eq:addth2}
+ \\
+ 2\sin(A)\sin(B)
+ &=
+ \cos(A-B)-\cos(A+B)
+ \label{fm:eq:addth3}
+\end{align}
+und die drei Bessel-Funktionsindentitäten,
+\begin{align}
+ \cos(\beta\sin\phi)
+ &=
+ J_0(\beta) + 2\sum_{k=1}^\infty J_{2k}(\beta) \cos(2k\phi)
+ \label{fm:eq:besselid1}
+ \\
+ \sin(\beta\sin\phi)
+ &=
+ 2\sum_{k=0}^\infty J_{2k+1}(\beta) \cos((2k+1)\phi)
+ \label{fm:eq:besselid2}
+ \\
+ J_{-n}(\beta) &= (-1)^n J_n(\beta)
+ \label{fm:eq:besselid3}
+\end{align}
+welche man im Kapitel \eqref{buch:fourier:eqn:expinphireal}, \eqref{buch:fourier:eqn:expinphiimaginary}, \eqref{buch:fourier:eqn:symetrie} findet.
+
+\subsubsection{Anwenden des Additionstheorem}
+Mit dem \eqref{fm:eq:addth1} wird aus dem modulierten Signal
+\[
+ x_c(t)
+ =
+ \cos(\omega_c t + \beta\sin(\omega_mt))
+ =
+ \cos(\omega_c t)\cos(\beta\sin(\omega_m t))-\sin(\omega_ct)\sin(\beta\sin(\omega_m t)).
+ \label{fm:eq:start}
+\]
+%-----------------------------------------------------------------------------------------------------------
+\subsubsection{Cos-Teil}
+Zu beginn wird der Cos-Teil
+\begin{align*}
+ c(t)
+ &=
+ \cos(\omega_c t)\cdot\cos(\beta\sin(\omega_mt))
+\end{align*}
+mit hilfe der Besselindentität \eqref{fm:eq:besselid1} zum
+\begin{align*}
+ c(t)
+ &=
+ \cos(\omega_c t) \cdot \bigg[ J_0(\beta) + 2\sum_{k=1}^\infty J_{2k}(\beta) \cos( 2k \omega_m t)\, \bigg]
+ \\
+ &=
+ J_0(\beta) \cdot \cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) \underbrace{2\cos(\omega_c t)\cos(2k\omega_m t)}_{\text{Additionstheorem \eqref{fm:eq:addth2}}}
+\end{align*}
+%intertext{} Funktioniert nicht.
+wobei mit dem Additionstheorem \eqref{fm:eq:addth2} \(A = \omega_c t\) und \(B = 2k\omega_m t \) ersetzt wurden.
+\begin{align*}
+ c(t)
+ &=
+ J_0(\beta) \cdot \cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) \{ \underbrace{\cos((\omega_c - 2k \omega_m) t)} \,+\, \cos((\omega_c + 2k \omega_m) t) \}
+ \\
+ &=
+ \sum_{k=-\infty}^{-1} J_{2k}(\beta) \overbrace{\cos((\omega_c +2k \omega_m) t)}
+ \,+\,J_0(\beta)\cdot \cos(\omega_c t+ 2\cdot0 \omega_m)
+ \,+\, \sum_{k=1}^\infty J_{2k}(\beta)\cos((\omega_c + 2k \omega_m) t)
+\end{align*}
+wird.
+Das Minus im Ersten Term wird zur negativen Summe \(\sum_{-\infty}^{-1}\) ersetzt.
+Da \(2k\) immer gerade ist, wird es durch alle negativen und positiven Ganzzahlen \(n\) ersetzt:
+\begin{align*}
+ \sum_{n\, \text{gerade}} J_{n}(\beta) \cos((\omega_c + n \omega_m) t),
+ \label{fm:eq:gerade}
+\end{align*}
+%----------------------------------------------------------------------------------------------------------------
+\subsubsection{Sin-Teil}
+Nun zum zweiten Teil des Term \eqref{fm:eq:start}, den Sin-Teil
+\begin{align*}
+ s(t)
+ &=
+ -\sin(\omega_c t)\cdot\sin(\beta\sin(\omega_m t)).
+\end{align*}
+Dieser wird mit der \eqref{fm:eq:besselid2} Besselindentität zu
+\begin{align*}
+ s(t)
+ &=
+ -\sin(\omega_c t) \cdot \bigg[ 2 \sum_{k=0}^\infty J_{ 2k + 1}(\beta) \cos(( 2k + 1) \omega_m t) \bigg]
+ \\
+ &=
+ \sum_{k=0}^\infty -1 \cdot J_{2k+1}(\beta) 2\sin(\omega_c t)\cos((2k+1)\omega_m t).
+\end{align*}
+Da \(2k + 1\) alle ungeraden positiven Ganzzahlen entspricht wird es durch \(n\) ersetzt.
+Wird die Besselindentität \eqref{fm:eq:besselid3} gebraucht, so ersetzten wird \(J_{-n}(\beta) = -1\cdot J_n(\beta)\) ersetzt:
+\begin{align*}
+ s(t)
+ &=
+ \sum_{n=0}^\infty J_{-n}(\beta) \underbrace{2\sin(\omega_c t)\cos(n \omega_m t)}_{\text{Additionstheorem \eqref{fm:eq:addth3}}}.
+\end{align*}
+Auch hier wird ein Additionstheorem \eqref{fm:eq:addth3} gebraucht, dabei ist \(A = \omega_c t\) und \(B = n \omega_m t \),
+somit wird daraus:
+\begin{align*}
+ s(t)
+ &=
+ \sum_{n=0}^\infty J_{-n}(\beta) \{ \underbrace{\cos((\omega_c - n\omega_m) t)} \,-\, \cos((\omega_c + n\omega_m) t) \}
+ \\
+ &=
+ \sum_{n=- \infty}^{0} J_{n}(\beta) \overbrace{\cos((\omega_c + n \omega_m) t)}
+ \,-\, \sum_{n=0}^\infty J_{-n}(\beta) \cos((\omega_c + n\omega_m) t)
+\end{align*}
+Auch hier wurde wieder eine zweite Summe \(\sum_{-\infty}^{-1}\) gebraucht um das Minus zu einem Plus zu wandeln.
+Wenn \(n = 0 \) ist der Minuend gleich dem Subtrahend und somit dieser Teil \(=0\), das bedeutet \(n\) ended bei \(-1\) und started bei \(1\).
+\begin{align*}
+ s(t)
+ &=
+ \sum_{n=- \infty}^{-1} J_{n}(\beta) \cos((\omega_c + n \omega_m) t)
+ \underbrace{\,-\, \sum_{n=1}^\infty J_{-n}(\beta)} \cos((\omega_c + n\omega_m) t)
+\end{align*}
+Um aus diesem Subtrahend eine Addition zu kreiernen, wird die Besselindentität \eqref{fm:eq:besselid3} gebraucht,
+jedoch so \(-1 \cdot J_{-n}(\beta) = J_n(\beta)\) und daraus wird dann:
+\begin{align*}
+ s(t)
+ &=
+ \sum_{n=- \infty}^{-1} J_{n}(\beta) \cos((\omega_c + n \omega_m) t)
+ \,+\, \sum_{n=1}^\infty J_{n}(\beta) \cos((\omega_c + n\omega_m) t)
+\end{align*}
+Da \(n\) immer ungerade ist und \(0\) nicht zu den ungeraden zahlen zählt, kann man dies so vereinfacht
+\[
+ s(t)
+ =
+ \sum_{n\, \text{ungerade}} -1 \cdot J_{n}(\beta) \cos((\omega_c + n\omega_m) t).
+ \label{fm:eq:ungerade}
+\]
+schreiben.
+%------------------------------------------------------------------------------------------
+\subsubsection{Summe Zusammenführen}
+Beide Teile \eqref{fm:eq:gerade} Gerade
+\[
+ \sum_{n\, \text{gerade}} J_{n}(\beta) \cos((\omega_c + n\omega_m) t)
+\]
+und \eqref{fm:eq:ungerade} Ungerade
+\[
+ \sum_{n\, \text{ungerade}} J_{n}(\beta) \cos((\omega_c + n\omega_m) t)
+\]
+ergeben zusammen
+\[
+ \cos(\omega_ct+\beta\sin(\omega_mt))
+ =
+ \sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omega_m)t).
+\]
+Somit ist \eqref{fm:eq:proof} bewiesen.
+\newpage
+%-----------------------------------------------------------------------------------------
+\subsection{Bessel und Frequenzspektrum}
+Um sich das ganze noch einwenig Bildlicher vorzustellenhier einmal die Bessel-Funktion \(J_{k}(\beta)\) in geplottet.
+\begin{figure}
+ \centering
+ \input{papers/fm/Python animation/bessel.pgf}
+ \caption{Bessle Funktion \(J_{k}(\beta)\)}
+ \label{fig:bessel}
+\end{figure}
+TODO Grafik einfügen,
+\newline
+Nun einmal das Modulierte FM signal im Frequenzspektrum mit den einzelen Summen dargestellt
+
+TODO
Hier wird beschrieben wie die Bessel Funktion der FM im Frequenzspektrum hilft, wieso diese gebrauch wird und ihre Vorteile.
-%Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-%accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-%quae ab illo inventore veritatis et quasi architecto beatae vitae
-%dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-%aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-%eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-%est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-%velit, sed quia non numquam eius modi tempora incidunt ut labore
-%et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-%veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-%nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-%reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-%consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-%pariatur?
-%
+\begin{itemize}
+ \item Zuerest einmal die Herleitung von FM zu der Bessel-Funktion
+ \item Im Frequenzspektrum darstellen mit Farben, ersichtlich machen.
+ \item Parameter tuing der Trägerfrequenz, Modulierende frequenz und Beta.
+\end{itemize}
+
+
%\subsection{De finibus bonorum et malorum
%\label{fm:subsection:bonorum}}