aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/fm/03_bessel.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/fm/03_bessel.tex')
-rw-r--r--buch/papers/fm/03_bessel.tex25
1 files changed, 18 insertions, 7 deletions
diff --git a/buch/papers/fm/03_bessel.tex b/buch/papers/fm/03_bessel.tex
index 45f2dfd..3c2cb71 100644
--- a/buch/papers/fm/03_bessel.tex
+++ b/buch/papers/fm/03_bessel.tex
@@ -67,7 +67,7 @@ Mit dem \eqref{fm:eq:addth1} wird aus dem modulierten Signal
=
\cos(\omega_c t + \beta\sin(\omega_mt))
=
- \cos(\omega_c t)\cos(\beta\sin(\omega_m t))-\sin(\omega_ct)\sin(\beta\sin(\omega_m t)).
+ \cos(\omega_c t)\cos(\beta\sin(\omega_m t)) - \sin(\omega_ct)\sin(\beta\sin(\omega_m t)).
\label{fm:eq:start}
\]
%-----------------------------------------------------------------------------------------------------------
@@ -89,23 +89,34 @@ mit hilfe der Besselindentität \eqref{fm:eq:besselid1} zum
\end{align*}
%intertext{} Funktioniert nicht.
wobei mit dem Additionstheorem \eqref{fm:eq:addth2} \(A = \omega_c t\) und \(B = 2k\omega_m t \) ersetzt wurden.
+Nun kann die Summe in zwei Summen
\begin{align*}
c(t)
&=
- J_0(\beta) \cdot \cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) \{ \underbrace{\cos((\omega_c - 2k \omega_m) t)} \,+\, \cos((\omega_c + 2k \omega_m) t) \}
+ J_0(\beta) \cdot \cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) \cos((\omega_c - 2k \omega_m) t) \,+\, \cos((\omega_c + 2k \omega_m) t) \}
\\
&=
- \sum_{k=-\infty}^{-1} J_{2k}(\beta) \overbrace{\cos((\omega_c +2k \omega_m) t)}
- \,+\,J_0(\beta)\cdot \cos(\omega_c t+ 2\cdot0 \omega_m)
+ \sum_{k=\infty}^{1} J_{2k}(\beta) \underbrace{\cos((\omega_c - 2k \omega_m) t)}
+ \,+\,J_0(\beta)\cdot \cos(\omega_c t)
\,+\, \sum_{k=1}^\infty J_{2k}(\beta)\cos((\omega_c + 2k \omega_m) t)
\end{align*}
-wird.
-Das Minus im Ersten Term wird zur negativen Summe \(\sum_{-\infty}^{-1}\) ersetzt.
-Da \(2k\) immer gerade ist, wird es durch alle negativen und positiven Ganzzahlen \(n\) ersetzt:
+aufgeteilt werden.
+Wenn bei der ersten Summe noch \(k\) von \(-\infty \to -1\) läuft, wird diese summe zu \(\sum_{k=-1}^{-\infty} J_{-2k}(\beta) {\cos((\omega_c + 2k \omega_m) t)} \)
+Zudem kann die Besselindentität \eqref{fm:eq:besselid3} gebraucht werden. \(n \) wird mit \(2k\) ersetzt, da dies immer gerade ist so gilt: \(J_{-n}(\beta) = J_n(\beta)\)
+Somit bekommt man zwei gleiche Summen
+\begin{align*}
+ c(t)
+ &=
+ \sum_{k=-\infty}^{-1} J_{2k}(\beta) \cos((\omega_c + 2k \omega_m) t)
+ \,+\,J_0(\beta)\cdot \cos(\omega_c t+ 2 \cdot 0 \omega_m)
+ \,+\, \sum_{k=1}^\infty J_{2k}(\beta)\cos((\omega_c + 2k \omega_m) t)
+\end{align*}
+Diese können wir vereinfachter schreiben,
\begin{align*}
\sum_{n\, \text{gerade}} J_{n}(\beta) \cos((\omega_c + n \omega_m) t),
\label{fm:eq:gerade}
\end{align*}
+da \(2k\) für alle negativen, wie positiven geraden Zahlen zählt.
%----------------------------------------------------------------------------------------------------------------
\subsubsection{Sin-Teil}
Nun zum zweiten Teil des Term \eqref{fm:eq:start}, den Sin-Teil