aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/kra/anwendung.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/kra/anwendung.tex')
-rw-r--r--buch/papers/kra/anwendung.tex6
1 files changed, 3 insertions, 3 deletions
diff --git a/buch/papers/kra/anwendung.tex b/buch/papers/kra/anwendung.tex
index 704de43..ee42b64 100644
--- a/buch/papers/kra/anwendung.tex
+++ b/buch/papers/kra/anwendung.tex
@@ -163,12 +163,12 @@ In Matrixschreibweise erhalten wir
\subsection{Phasenraum}
\subsubsection{Motivation}
-Die Beschreibung eines klassischen physikalischen Systems führt in der Newtonschen-Mechanik, wie wir in \ref{kra:subsection:feder-masse-system} gesehen haben, auf eine DGL 2. Ordung der Dimension $n$.
+Die Beschreibung eines klassischen physikalischen Systems führt in der Newtonschen-Mechanik, wie wir in \ref{kra:subsection:feder-masse-system} gesehen haben, auf eine Differentialgleichung 2. Ordung der Dimension $n$.
Zur Betrachung des Systems verwenden wir dabei den Konfigurationsraum, ein Raum $\mathbb{R}^n$, bei dem ein einziger Punkt die Position aller $n$ Teilchen festlegt.
Der Nachteil des Konfigurationsraums ist dabei, dass dieser nur die Positionen der Teilchen widerspiegelt.
Um den Zustand eines Systems vollständig zu beschreiben, muss man aber nicht nur wissen wo sich die Teilchen zu einem bestimmten Zeitpunkt befinden, sondern auch wie sie sich bewegen.
-Im Gegensatz dazu führt die Beschreibung des Systems mit Hilfe der Hamilton-Mechanik \ref{kra:subsection:hamilton-funktion}, auf eine DGL 1. Ordnung der Dimension $2n$.
+Im Gegensatz dazu führt die Beschreibung des Systems mit Hilfe der Hamilton-Mechanik \ref{kra:subsection:hamilton-funktion}, auf eine Differentialgleichung 1. Ordnung der Dimension $2n$.
Die Betrachtung erfolgt im einem Raum $\mathbb{R}^{2n}$, bei dem ein einzelner Punkt den Bewegungszustand vollständig beschreibt, dem sogennanten Phasenraum.
Die Phasenraumdarstellung eignet sich somit sehr gut für die systematische Untersuchung der Feder-Masse-Systeme.
@@ -224,7 +224,7 @@ Ausgeschrieben folgt
\end{split}
\end{equation}
was uns direkt auf die Matrix-Riccati Gleichung \eqref{kra:equation:matrixriccati} führt.
-Wir sehen das sich die Dimension der DGL reduziert, dabei aber gleichzeitig der Grad erhöht.
+Wir sehen das sich die Dimension der Differentialgleichung reduziert, dabei aber gleichzeitig der Grad erhöht.
\subsection{Fazit}
Wir haben gezeigt wie wir ein Federmassesystem mit Hilfe der Hamilton-Funktion Beschreiben und im Phasenraum untersuchen können.