aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/kra/loesung.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/kra/loesung.tex')
-rw-r--r--buch/papers/kra/loesung.tex85
1 files changed, 73 insertions, 12 deletions
diff --git a/buch/papers/kra/loesung.tex b/buch/papers/kra/loesung.tex
index 18ac853..604a5ec 100644
--- a/buch/papers/kra/loesung.tex
+++ b/buch/papers/kra/loesung.tex
@@ -15,13 +15,13 @@ Durch Ausschreiben des Differentialquotienten
\begin{equation}
\frac{dy}{dx} = fy^2 + gy + h
\end{equation}
-erkennt man, dass die DGL separierbar ist. Die Lösung findet man nun durch die Berechnung des Integrals
+erkennt man, dass die Differentialgleichung separierbar ist. Die Lösung findet man nun durch die Berechnung des Integrals
\begin{equation} \label{kra:equation:case1_int}
\int \frac{dy}{fy^2 + gy + h} = \int dx.
\end{equation}
\subsubsection{Fall 2: Bekannte spezielle Lösung}
-Kennt man eine spezielle Lösung $y_p$, so kann die riccatische DGL mit Hilfe einer Substitution auf eine lineare Gleichung reduziert werden.
+Kennt man eine spezielle Lösung $y_p$, so kann die riccatische Differentialgleichung mit Hilfe einer Substitution auf eine lineare Gleichung reduziert werden.
Wir wählen als Substitution
\begin{equation} \label{kra:equation:substitution}
z = \frac{1}{y - y_p},
@@ -33,7 +33,7 @@ durch Umstellen von \eqref{kra:equation:substitution} folgt
\begin{equation}
y' = y_p' - \frac{1}{z^2}z',
\end{equation}
-mit Einsetzten in die DGL \eqref{kra:equation:riccati} resultiert
+mit Einsetzten in die Differentialgleichung \eqref{kra:equation:riccati} resultiert
\begin{equation}
y_p' - \frac{1}{z^2}z' = f(x)(y_p + \frac{1}{z}) + g(x)(y_p + \frac{1}{z})^2 + h(x)
\end{equation}
@@ -49,7 +49,9 @@ Diese kann nun mit den Methoden zur Lösung von linearen Differentialgleichungen
Durch die Rücksubstitution \eqref{kra:equation:backsubstitution} erhält man dann die Lösung von \eqref{kra:equation:riccati}.
\subsection{Matrix-Riccati-Differentialgleichung} \label{kra:loesung:riccati}
-Im Folgenden wollen wir uns anschauen wie die Matrix-Riccati-DGL entsteht und wie sie gelöst werden kann.
+Im Folgenden wollen wir uns anschauen wie die Matrix-Riccati-Differentialgleichung entsteht und wie sie gelöst werden kann.
+
+\subsubsection{Entstehung}
Der Ausgangspunkt bildet die Matrix-Differentialgleichung
\begin{equation}
\label{kra:equation:matrix-dgl}
@@ -63,19 +65,77 @@ Der Ausgangspunkt bildet die Matrix-Differentialgleichung
A & B \\
C & D
\end{pmatrix}
- }_{\displaystyle{H}},
+ }_{\displaystyle{H}}
+ \begin{pmatrix}
+ X(t) \\
+ Y(t)
+ \end{pmatrix}
\end{equation}
-mit den allgemeinen quadratischen Matrizen $A, B, C$ und $D$ welche zusammen die sogennante Hamilonsche-Matrix bilden.
-Betrachten wir das Verhältniss von $Y$ zu $X$
+mit den allgemeinen quadratischen Matrizen $A, B, C$ und $D$, welche in der sogenannten Hamiltonschen-Matrix $H$ zusammengefasst werden können.
+Wir führen eine neue Grösse
\[
- P(t) = Y(t)X^{-1}
+ U(t) = Y(t)X(t)^{-1}
\]
-und deren Ableitung $\dot{P}(t)$, so erhalten wir die Riccati-Matrix-DGL
+ein, für dessen Ableitung $\dt U(t)$ wir mit
\[
- \dot{P}(t) = C + DU - UA - UBU.
+ \dot{X}(t) = AX(t) + BY(t) \quad \text{und} \quad \dot{Y}(t) = CX(t) + DY(t)
\]
+folgendes Ergebnis erhalten
+\begin{equation}
+ \label{kra:equation:feder-masse-riccati-matrix}
+ \begin{split}
+ \dt U(t) &= \dot{Y}(t) X(t)^{-1} + Y(t) \dt X(t)^{-1} \\
+ &= (CX(t) + DY(t)) X(t)^{-1} - Y(t) (X(t)^{-1} \dot{X}(t) X(t)^{-1}) \\
+ &= C\underbrace{X(t)X(t)^{-1}}_\text{$I$} + D\underbrace{Y(t)X(t)^{-1}}_\text{$U(t)$} - Y(t)(X(t)^{-1} (AX(t) + BY(t)) X(t)^{-1}) \\
+ &= C + DU(t) - \underbrace{Y(t)X(t)^{-1}}_\text{$U(t)$}(A\underbrace{X(t)X(t)^{-1}}_\text{$I$} + B\underbrace{Y(t)X(t)^{-1}}_\text{$U(t)$}) \\
+ &= C + DU(t) - U(t)A - U(t)BU(t).
+ \end{split}
+\end{equation}
+\begin{satz}
+ \label{kra:satz:riccati-matrix-dgl}
+ Die Ableitung $\dt U(t) = \dt (Y(t)X(t)^{-1})$ ist eine Matrix-Riccati-Differentialgleichung.
+\end{satz}
-Die Lösung erhalten wir dann mit
+\subsubsection{Lösung}
+Sei
+\[
+ V(t)
+ =
+ \begin{pmatrix}
+ X(t) \\
+ Y(t)
+ \end{pmatrix},
+ \quad
+ \dot{V}(t) = HV(t)
+\]
+eine Matrix-Differentialgleichung 1. Ordnung, dann ist
+\[
+ V(t) = e^{H(t)} V(0)
+\]
+eine Lösung.
+Die Berechnung des Matrixexpontentials $e^{H(t)}$ kann mittels Diagonalisierung
+\[
+ H = Q \Lambda Q^{-1}
+\]
+effizient berechnet werden.
+Es folgt dann, dass
+\[
+ e^{Ht}
+ =
+ Q
+ e^{\Lambda t}
+ Q^{-1}
+ =
+ Q
+ \begin{pmatrix}
+ e^{\lambda_1 t} & 0 & \dots & 0 \\
+ 0 & e^{\lambda_2 t} & \ddots & \vdots \\
+ \vdots & \ddots & \ddots & 0 \\
+ 0 & \dots & 0 & e^{\lambda_n t}
+ \end{pmatrix}
+ Q^{-1}
+\]
+ist. Die Lösung der Matrix-Riccati-Differentialgleichung erhalten wir analog mit
\begin{equation}
\label{kra:matrixriccati-solution}
\begin{pmatrix}
@@ -108,4 +168,5 @@ Die Lösung erhalten wir dann mit
\end{pmatrix}
^{-1}
\end{equation}
-wobei $\Phi(t_0, t) = e^{H(t - t_0)}$ die sogenannte Zustandsübergangsmatrix von \eqref{kra:equation:matrix-dgl} ist \cite{kra:kalmanisae}.
+wobei $\Phi(t_0, t) = e^{H(t - t_0)}$ die sogenannte Zustandsübergangsmatrix von \eqref{kra:equation:matrix-dgl} ist,
+welche die Zeitentwicklung der einzelnen Lösungen beschreibt \cite{kra:kalmanisae}.