aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/kra/loesung.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/kra/loesung.tex')
-rw-r--r--buch/papers/kra/loesung.tex86
1 files changed, 86 insertions, 0 deletions
diff --git a/buch/papers/kra/loesung.tex b/buch/papers/kra/loesung.tex
new file mode 100644
index 0000000..4e0da1c
--- /dev/null
+++ b/buch/papers/kra/loesung.tex
@@ -0,0 +1,86 @@
+\section{Lösungsmethoden} \label{kra:section:loesung}
+\rhead{Lösungsmethoden}
+
+\subsection{Riccatische Differentialgleichung} \label{kra:loesung:riccati}
+Eine allgemeine analytische Lösung der Riccati Differentialgleichung ist nicht möglich.
+Es gibt aber Spezialfälle, in denen sich die Gleichung vereinfachen lässt und so eine analytische Lösung gefunden werden kann.
+Diese wollen wir im folgenden Abschnitt genauer anschauen.
+
+\subsubsection{Fall 1: Konstante Koeffizienten}
+Sind die Koeffizienten $f(x), g(x), h(x)$ Konstanten, so lässt sich die DGL separieren und reduziert sich auf die Lösung des Integrals \ref{kra:equation:case1_int}.
+\begin{equation}
+ y' = fy^2 + gy + h
+\end{equation}
+\begin{equation}
+ \frac{dy}{dx} = fy^2 + gy + h
+\end{equation}
+\begin{equation} \label{kra:equation:case1_int}
+ \int \frac{dy}{fy^2 + gy + h} = \int dx
+\end{equation}
+
+\subsubsection{Fall 2: Bekannte spezielle Lösung}
+Kennt man eine spezielle Lösung $y_p$ so kann die riccatische DGL mit Hilfe einer Substitution auf eine lineare Gleichung reduziert werden.
+Wir wählen als Substitution
+\begin{equation} \label{kra:equation:substitution}
+ z = \frac{1}{y - y_p}
+\end{equation}
+durch Umstellen von \ref{kra:equation:substitution} folgt
+\begin{equation}
+ y = y_p + \frac{1}{z^2} \label{kra:equation:backsubstitution}
+\end{equation}
+\begin{equation}
+ y' = y_p' - \frac{1}{z^2}z'
+\end{equation}
+mit Einsetzten in die DGL \ref{kra:equation:riccati} folgt
+\begin{equation}
+ y_p' - \frac{1}{z^2}z' = f(x)(y_p + \frac{1}{z}) + g(x)(y_p + \frac{1}{z})^2 + h(x)
+\end{equation}
+\begin{equation}
+ -z^{2}y_p' + z' = -z^2\underbrace{(y_{p}f(x) + g(x)y_p^2 + h(x))}_{y_p'} - z(f(x) + 2y_{p}g(x)) - g(x)
+\end{equation}
+was uns direkt auf eine lineare Differentialgleichung 1.Ordnung führt.
+\begin{equation}
+ z' = -z(f(x) + 2y_{p}g(x)) - g(x)
+\end{equation}
+Diese kann nun mit den Methoden zur Lösung von linearen Differentialgleichungen 1.Ordnung gelöst werden.
+Durch die Rücksubstitution \ref{kra:equation:backsubstitution} erhält man dann die Lösung von \ref{kra:equation:riccati}.
+
+\subsection{Matrix-Riccati Differentialgleichung} \label{kra:loesung:riccati}
+% Lösung matrix riccati
+Die Lösung der Matrix-Riccati Gleichung \ref{kra:equation:matrixriccati} erhalten wir nach \cite{kra:kalmanisae} folgendermassen
+\begin{equation}
+ \label{kra:matrixriccati-solution}
+ \begin{pmatrix}
+ X(t) \\
+ Y(t)
+ \end{pmatrix}
+ =
+ \Phi(t_0, t)
+ \begin{pmatrix}
+ I(t) \\
+ U_0(t)
+ \end{pmatrix}
+ =
+ \begin{pmatrix}
+ \Phi_{11}(t_0, t) & \Phi_{12}(t_0, t) \\
+ \Phi_{21}(t_0, t) & \Phi_{22}(t_0, t)
+ \end{pmatrix}
+ \begin{pmatrix}
+ I(t) \\
+ U_0(t)
+ \end{pmatrix}
+\end{equation}
+\begin{equation}
+ U(t) =
+ \begin{pmatrix}
+ \Phi_{21}(t_0, t) + \Phi_{22}(t_0, t)
+ \end{pmatrix}
+ \begin{pmatrix}
+ \Phi_{11}(t_0, t) + \Phi_{12}(t_0, t)
+ \end{pmatrix}
+ ^{-1}
+\end{equation}
+wobei $\Phi(t, t_0)$ die sogenannte Zustandsübergangsmatrix ist.
+\begin{equation}
+ \Phi(t_0, t) = e^{H(t - t_0)}
+\end{equation}