aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/kra/loesung.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/kra/loesung.tex')
-rw-r--r--buch/papers/kra/loesung.tex40
1 files changed, 31 insertions, 9 deletions
diff --git a/buch/papers/kra/loesung.tex b/buch/papers/kra/loesung.tex
index dbbb7f6..18ac853 100644
--- a/buch/papers/kra/loesung.tex
+++ b/buch/papers/kra/loesung.tex
@@ -49,8 +49,33 @@ Diese kann nun mit den Methoden zur Lösung von linearen Differentialgleichungen
Durch die Rücksubstitution \eqref{kra:equation:backsubstitution} erhält man dann die Lösung von \eqref{kra:equation:riccati}.
\subsection{Matrix-Riccati-Differentialgleichung} \label{kra:loesung:riccati}
-% Lösung matrix riccati
-Die Lösung der Matrix-Riccati-Gleichung \ref{kra:equation:matrixriccati} erhalten wir nach \cite{kra:kalmanisae} folgendermassen
+Im Folgenden wollen wir uns anschauen wie die Matrix-Riccati-DGL entsteht und wie sie gelöst werden kann.
+Der Ausgangspunkt bildet die Matrix-Differentialgleichung
+\begin{equation}
+ \label{kra:equation:matrix-dgl}
+ \begin{pmatrix}
+ \dot{X}(t) \\
+ \dot{Y}(t)
+ \end{pmatrix}
+ =
+ \underbrace{
+ \begin{pmatrix}
+ A & B \\
+ C & D
+ \end{pmatrix}
+ }_{\displaystyle{H}},
+\end{equation}
+mit den allgemeinen quadratischen Matrizen $A, B, C$ und $D$ welche zusammen die sogennante Hamilonsche-Matrix bilden.
+Betrachten wir das Verhältniss von $Y$ zu $X$
+\[
+ P(t) = Y(t)X^{-1}
+\]
+und deren Ableitung $\dot{P}(t)$, so erhalten wir die Riccati-Matrix-DGL
+\[
+ \dot{P}(t) = C + DU - UA - UBU.
+\]
+
+Die Lösung erhalten wir dann mit
\begin{equation}
\label{kra:matrixriccati-solution}
\begin{pmatrix}
@@ -61,7 +86,7 @@ Die Lösung der Matrix-Riccati-Gleichung \ref{kra:equation:matrixriccati} erhalt
\Phi(t_0, t)
\begin{pmatrix}
I(t) \\
- U_0(t)
+ P_0(t)
\end{pmatrix}
=
\begin{pmatrix}
@@ -70,11 +95,11 @@ Die Lösung der Matrix-Riccati-Gleichung \ref{kra:equation:matrixriccati} erhalt
\end{pmatrix}
\begin{pmatrix}
I(t) \\
- U_0(t)
+ P_0(t)
\end{pmatrix}
\end{equation}
\begin{equation}
- U(t) =
+ P(t) =
\begin{pmatrix}
\Phi_{21}(t_0, t) + \Phi_{22}(t_0, t)
\end{pmatrix}
@@ -83,7 +108,4 @@ Die Lösung der Matrix-Riccati-Gleichung \ref{kra:equation:matrixriccati} erhalt
\end{pmatrix}
^{-1}
\end{equation}
-wobei $\Phi(t, t_0)$ die sogenannte Zustandsübergangsmatrix ist.
-\begin{equation}
- \Phi(t_0, t) = e^{H(t - t_0)}
-\end{equation}
+wobei $\Phi(t_0, t) = e^{H(t - t_0)}$ die sogenannte Zustandsübergangsmatrix von \eqref{kra:equation:matrix-dgl} ist \cite{kra:kalmanisae}.