aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/laguerre/definition.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/laguerre/definition.tex')
-rw-r--r--buch/papers/laguerre/definition.tex86
1 files changed, 61 insertions, 25 deletions
diff --git a/buch/papers/laguerre/definition.tex b/buch/papers/laguerre/definition.tex
index 4729a93..e2062d2 100644
--- a/buch/papers/laguerre/definition.tex
+++ b/buch/papers/laguerre/definition.tex
@@ -3,51 +3,80 @@
%
% (c) 2022 Patrik Müller, Ostschweizer Fachhochschule
%
-\section{Definition
- \label{laguerre:section:definition}}
-\rhead{Definition}
-Die verallgemeinerte Laguerre-Differentialgleichung ist gegeben durch
+\section{Herleitung%
+% \section{Einleitung
+% \section{Definition
+\label{laguerre:section:definition}}
+\rhead{Definition}%
+In einem ersten Schritt möchten wir die Laguerre-Polynome
+aus der Laguerre-\-Differentialgleichung herleiten.
+Zudem möchten wir die Lösung auch auf
+die assoziierten Laguerre-Polynome ausweiten.
+Im Anschluss möchten wir dann noch die Orthogonalität dieser Polynome beweisen.
+
+\subsection{Assoziierte Laguerre-Differentialgleichung}
+Die assoziierte Laguerre-Differentialgleichung ist gegeben durch
\begin{align}
x y''(x) + (\nu + 1 - x) y'(x) + n y(x)
=
0
, \quad
-n \in \mathbb{N}_0
+n \in \mathbb{N}
, \quad
x \in \mathbb{R}
\label{laguerre:dgl}
.
\end{align}
-Spannenderweise wurde die verallgemeinerte Laguerre-Differentialgleichung
+Spannenderweise wurde die assoziierte Laguerre-Differentialgleichung
zuerst von Yacovlevich Sonine (1849 - 1915) beschrieben,
aber aufgrund ihrer Ähnlichkeit nach Laguerre benannt.
Die klassische Laguerre-Diffentialgleichung erhält man, wenn $\nu = 0$.
-Hier wird die verallgemeinerte Laguerre-Differentialgleichung verwendet,
+
+{\subsection{Potenzreihenansatz}
+\label{laguerre:subsection:potenzreihenansatz}}
+Hier wird die assoziierte Laguerre-Differentialgleichung verwendet,
weil die Lösung mit derselben Methode berechnet werden kann.
Zusätzlich erhält man aber die Lösung für den allgmeinen Fall.
-Zur Lösung von \eqref{laguerre:dgl} verwenden wir einen
-Potenzreihenansatz.
-Da wir bereits wissen, dass die Lösung orthogonale Polynome sind,
-erscheint dieser Ansatz sinnvoll.
-Setzt man nun den Ansatz
+Wir stellen die Vermutung auf,
+dass die Lösungen orthogonale Polynome sind.
+Die Orthogonalität der Lösung werden wir im
+Abschnitt~\ref{laguerre:subsection:orthogonal} beweisen.
+Zur Lösung von \eqref{laguerre:dgl} verwenden wir aufgrund
+der getroffenen Vermutungen einen Potenzreihenansatz.
+Der Potenzreihenansatz ist gegeben als
+% Da wir bereits wissen,
+% dass die Lösung orthogonale Polynome sind,
+% erscheint dieser Ansatz sinnvoll.
\begin{align*}
y(x)
- & =
+& =
\sum_{k=0}^\infty a_k x^k
-\\
+% \\
+.
+\end{align*}
+Für die 1. und 2. Ableitungen erhalten wir
+\begin{align*}
y'(x)
- & =
+& =
\sum_{k=1}^\infty k a_k x^{k-1}
=
\sum_{k=0}^\infty (k+1) a_{k+1} x^k
\\
y''(x)
- & =
+& =
\sum_{k=2}^\infty k (k-1) a_k x^{k-2}
=
\sum_{k=1}^\infty (k+1) k a_{k+1} x^{k-1}
+.
\end{align*}
-in die Differentialgleichung ein, erhält man
+
+\subsection{Lösen der Laguerre-Differentialgleichung}
+Setzt man nun den Potenzreihenansatz in
+\eqref{laguerre:dgl}
+%die Differentialgleichung
+ein,
+% erhält man
+resultiert
\begin{align*}
\sum_{k=1}^\infty (k+1) k a_{k+1} x^k
+
@@ -64,16 +93,18 @@ n \sum_{k=0}^\infty a_k x^k
0.
\end{align*}
Daraus lässt sich die Rekursionsbeziehung
-\begin{align*}
+\begin{align}
a_{k+1}
& =
\frac{k-n}{(k+1) (k + \nu + 1)} a_k
-\end{align*}
+\label{laguerre:rekursion}
+\end{align}
ableiten.
Für ein konstantes $n$ erhalten wir als Potenzreihenlösung ein Polynom vom Grad
$n$,
denn für $k=n$ wird $a_{n+1} = 0$ und damit auch $a_{n+2}=a_{n+3}=\ldots=0$.
-Aus der Rekursionsbeziehung ist zudem ersichtlich,
+Aus %der Rekursionsbeziehung
+\eqref{laguerre:rekursion} ist zudem ersichtlich,
dass $a_0 \neq 0$ beliebig gewählt werden kann.
Wählen wir nun $a_0 = 1$, dann folgt für die Koeffizienten $a_1, a_2, a_3$
\begin{align*}
@@ -114,7 +145,7 @@ L_n(x)
\sum_{k=0}^{n} \frac{(-1)^k}{k!} \binom{n}{k} x^k
\label{laguerre:polynom}
\end{align}
-und mit $\nu \in \mathbb{R}$ die verallgemeinerten Laguerre-Polynome
+und mit $\nu \in \mathbb{R}$ die assoziierten Laguerre-Polynome
\begin{align}
L_n^\nu(x)
=
@@ -132,14 +163,19 @@ Abbildung~\ref{laguerre:fig:polyeval} dargestellt.
\end{figure}
\subsection{Analytische Fortsetzung}
-Durch die analytische Fortsetzung erhalten wir zudem noch die zweite Lösung der
-Differentialgleichung mit der Form
+Durch die analytische Fortsetzung können wir zudem noch die zweite Lösung der
+Differentialgleichung erhalten.
+Laut \eqref{buch:funktionentheorie:singularitäten:eqn:w1} hat die Lösung
+die Form
\begin{align*}
\Xi_n(x)
=
-L_n(x) \ln(x) + \sum_{k=1}^\infty d_k x^k
+L_n(x) \log(x) + \sum_{k=1}^\infty d_k x^k
.
\end{align*}
+Eine Herleitung dazu lässt sich im
+Abschnitt \ref{buch:funktionentheorie:subsection:dglsing}
+im ersten Teil des Buches finden.
Nach einigen aufwändigen Rechnungen,
% die am besten ein Computeralgebrasystem übernimmt,
die den Rahmen dieses Kapitel sprengen würden,
@@ -147,7 +183,7 @@ erhalten wir
\begin{align*}
\Xi_n
=
-L_n(x) \ln(x)
+L_n(x) \log(x)
+
\sum_{k=1}^n \frac{(-1)^k}{k!} \binom{n}{k}
(\alpha_{n-k} - \alpha_n - 2 \alpha_k)x^k