aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/lambertw/teil1.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/lambertw/teil1.tex')
-rw-r--r--buch/papers/lambertw/teil1.tex210
1 files changed, 162 insertions, 48 deletions
diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex
index 7b545c3..fa7deb1 100644
--- a/buch/papers/lambertw/teil1.tex
+++ b/buch/papers/lambertw/teil1.tex
@@ -3,53 +3,167 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\section{Teil 1
-\label{lambertw:section:teil1}}
-\rhead{Problemstellung}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo.
-Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit
-aut fugit, sed quia consequuntur magni dolores eos qui ratione
-voluptatem sequi nesciunt
-\begin{equation}
-\int_a^b x^2\, dx
-=
-\left[ \frac13 x^3 \right]_a^b
-=
-\frac{b^3-a^3}3.
-\label{lambertw:equation1}
-\end{equation}
-Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet,
-consectetur, adipisci velit, sed quia non numquam eius modi tempora
-incidunt ut labore et dolore magnam aliquam quaerat voluptatem.
-
-Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis
-suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur?
-Quis autem vel eum iure reprehenderit qui in ea voluptate velit
-esse quam nihil molestiae consequatur, vel illum qui dolorem eum
-fugiat quo voluptas nulla pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{lambertw:subsection:finibus}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}.
-
-Et harum quidem rerum facilis est et expedita distinctio
-\ref{lambertw:section:loesung}.
-Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil
-impedit quo minus id quod maxime placeat facere possimus, omnis
-voluptas assumenda est, omnis dolor repellendus
-\ref{lambertw:section:folgerung}.
-Temporibus autem quibusdam et aut officiis debitis aut rerum
-necessitatibus saepe eveniet ut et voluptates repudiandae sint et
-molestiae non recusandae.
-Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis
-voluptatibus maiores alias consequatur aut perferendis doloribus
-asperiores repellat.
+\section{Wird das Ziel erreicht?
+\label{lambertw:section:Wird_das_Ziel_erreicht}}
+\rhead{Wird das Ziel erreicht?}
+
+Sehr oft kommt es vor, dass bei Verfolgungsproblemen die Frage auftaucht, ob das Ziel überhaupt erreicht wird.
+Wenn zum Beispiel die Geschwindigkeit des Verfolgers kleiner ist als diejenige des Ziels, gibt es Anfangsbedingungen bei denen das Ziel nie erreicht wird.
+Im Anschluss dieser Frage stellt sich meist die nächste Frage, wie lange es dauert bis das Ziel erreicht wird.
+Diese beiden Fragen werden in diesem Kapitel behandelt und an einem Beispiel betrachtet.
+%
+%\subsection{Ziel erreichen (überarbeiten)
+%\label{lambertw:subsection:ZielErreichen}}
+Für diese Betrachtung wird das Beispiel aus \eqref{lambertw:section:teil4} zur Hilfe genommen.
+Wir verwenden die hergeleiteten Gleichungen \eqref{lambertw:eqFunkXNachT} für Startbedingung im ersten Quadranten
+\begin{align*}
+ x\left(t\right)
+ &=
+ x_0\cdot\sqrt{\frac{W\left(\chi\cdot e^{\chi-\frac{4t}{r_0-y_0}}\right)}{\chi}} \\
+ y(t)
+ &=
+ \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(r_0-y_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right)\\
+ \chi
+ &=
+ \frac{r_0+y_0}{r_0-y_0}\\
+ \eta
+ &=
+ \left(\frac{x}{x_0}\right)^2\\
+ r_0
+ &=
+ \sqrt{x_0^2+y_0^2} \text{.}\\
+\end{align*}
+%
+Das Ziel wird erreicht, wenn die Koordinaten des Verfolgers mit denen des Ziels bei einem diskreten Zeitpunkt $t_1$ übereinstimmen.
+Somit gilt es
+
+\begin{equation*}
+ \vec{Z}(t_1)=\vec{V}(t_1)
+\end{equation*}
+%
+zu lösen.
+Aus dem vorangegangenem Beispiel, ist die Parametrisierung des Verfolgers und des Ziels bekannt.
+Das Ziel wird parametrisiert durch
+
+\begin{equation}
+ \vec{Z}(t)
+ =
+ \left( \begin{array}{c} 0 \\ t \end{array} \right)
+\end{equation}
+%
+und der Verfolger durch
+
+\begin{equation}
+ \vec{V}(t)
+ =
+ \left( \begin{array}{c} x(t) \\ y(t) \end{array} \right)
+ \text{.}
+\end{equation}
+%
+ Da $y(t)$ viel komplexer ist als $x(t)$ wird das Problem in zwei einzelne Teilprobleme zerlegt. Wobei die Bedingung der x- und y-Koordinaten einzeln überprüft werden. Es entstehen daher folgende Bedingungen
+
+\begin{align*}
+ 0
+ &=
+ x(t)
+ =
+ x_0\sqrt{\frac{W\left(\chi\cdot e^{\chi-\frac{4t}{r_0-y_0}}\right)}{\chi}}
+ \\
+ t
+ &=
+ y(t)
+ =
+ \frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(r_0-y_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right)
+ \\
+\end{align*}
+%
+, welche Beide gleichzeitig erfüllt sein müssen, damit das Ziel erreicht wurde.
+Zuerst wird die Bedingung der x-Koordinate betrachtet.
+Diese kann durch dividieren durch $x_0$, anschliessendes quadrieren und multiplizieren von $\chi$ vereinfacht werden. Daraus folgt
+\begin{equation}
+ 0
+ =
+ W\left(\chi\cdot e^{\chi-\frac{4t}{r_0-y_0}}\right)
+ \text{.}
+\end{equation}
+%
+Es ist zu beachten, dass $W(x)$ die Lambert W-Funktion ist, welche im Kapitel \eqref{buch:section:lambertw} behandelt wurde.
+Diese Gleichung entspricht genau den Nullstellen der Lambert W-Funktion. Da die Lambert W-Funktion genau eine Nullstelle bei
+
+\begin{equation*}
+ W(0)=0
+\end{equation*}
+%
+besitzt, kann die Bedingung weiter vereinfacht werden zu
+
+\begin{equation}
+ 0
+ =
+ \chi\cdot e^{\chi-\frac{4t}{r_0-y_0}}
+ \text{.}
+\end{equation}
+%
+Da $\chi\neq0$ und die Exponentialfunktion nie null sein kann, ist diese Bedingung unmöglich zu erfüllen.
+Beim Grenzwert für $t\rightarrow\infty$ geht die Exponentialfunktion gegen null.
+Dies nützt nicht viel, da unendlich viel Zeit vergehen müsste damit ein Einholen möglich wäre.
+Somit kann nach den Gestellten Bedingungen das Ziel nie erreicht werden.
+Aus der Symmetrie des Problems an der y-Achse können auch alle Anfangspunkte im zweiten Quadranten die Bedingungen nicht erfüllen.
+Bei allen Anfangspunkten mit $y_0<0$ ist ein Einholen unmöglich, da die Geschwindigkeit des Verfolgers und Ziels übereinstimmen und der Verfolger dem Ziel bereits am Anfang nachgeht.
+Wenn die Wertemenge der Anfangsbedingung um die positive y-Achse erweitert wird, kann das Ziel wiederum erreicht werden.
+Sobald der Verfolger auf der positiven y-Achse startet, bewegen sich Verfolger und Ziel aufeinander zu, da der Geschwindigkeitsvektor des Verfolgers auf das Ziel zeigt und der Verfolger sich auf der Fluchtgeraden befindet.
+Dies führt zwingend dazu, dass der Verfolger das Ziel erreichen wird.
+Die Verfolgungskurve kann in diesem Fall mit
+
+\begin{equation}
+ \vec{V}(t)
+ =
+ \left( \begin{array}{c} 0 \\ y_0-t \end{array} \right)
+\end{equation}
+%
+parametrisiert werden.
+Nun kann der Abstand zwischen Verfolger und Ziel leicht bestimmt und nach 0 aufgelöst werden.
+Daraus folgt
+
+\begin{equation}
+ 0
+ =
+ |\vec{V}(t_1)-\vec{Z}(t_1)|
+ =
+ y_0-2t_1
+\end{equation}
+%
+, was aufgelöst zu
+
+\begin{equation}
+ t_1
+ =
+ \frac{y_0}{2}
+\end{equation}
+%
+führt.
+Nun ist klar, dass lediglich Anfangspunkte auf der positiven y-Achse oder direkt auf dem Ziel dazu führen, dass der Verfolger das Ziel bei $t_1$ einholt.
+Bei allen anderen Anfangspunkten wird der Verfolger das Ziel nie erreichen.
+Dieses Resultat ist aber eher akademischer Natur, weil der Verfolger und das Ziel als Punkt betrachtet wurden.
+Wobei aber in Realität nicht von Punkten sondern von Objekten mit einer räumlichen Ausdehnung gesprochen werden kann.
+Somit wird in einer nächsten Betrachtung untersucht, ob der Verfolger dem Ziel näher kommt als ein definierter Trefferradius.
+Falls dies stattfinden sollte, wird dies als Treffer interpretiert.
+Mathematisch kann dies mit
+
+\begin{equation}
+ |\vec{V}-\vec{Z}|<a_{min} \quad a_{min}\in\mathbb{R}>0
+\end{equation}
+%
+beschrieben werden, wobei $a_{min}$ dem Trefferradius entspricht.
+Durch quadrieren verschwindet die Wurzel des Betrages, womit
+
+\begin{equation}
+ |\vec{V}-\vec{Z}|^2<a_{min}^2 \quad a_{min}\in \mathbb{R} > 0
+\end{equation}
+%
+die neue Bedingung ist.
+Da sowohl der Betrag als auch $a_{min}$ grösser null sind, bleibt die Aussage unverändert.
+
+
+