aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/lambertw
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/lambertw')
-rw-r--r--buch/papers/lambertw/teil1.tex20
1 files changed, 10 insertions, 10 deletions
diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex
index 8025830..c4b2d05 100644
--- a/buch/papers/lambertw/teil1.tex
+++ b/buch/papers/lambertw/teil1.tex
@@ -34,33 +34,32 @@ Die Parametrisierung von $v(t)$ ist von den Startbedingungen abhängig. Deshalb
%
\subsection{Anfangsbedingung im ersten Quadranten}
%
-Wenn der Verfolger im ersten Quadranten startet, dann kann $v(t)$ mit den Gleichungen aus \eqref{lambertw:eqFunkXNachT}, welche sind
+Wenn der Verfolger im ersten Quadranten startet, dann kann $v(t)$ mit den Gleichungen aus \eqref{lambertw:eqFunkXNachT}, welche
\begin{align}
x\left(t\right)
&=
- x_0\cdot\sqrt{\frac{1}{\chi}W\left(\chi\cdot \exp\left( \chi-\frac{4t}{r_0-y_0}\right) \right)} \\
+ x_0\cdot\sqrt{\frac{1}{\chi}W\left(\chi\cdot \exp\left( \chi-\frac{4t}{r_0-y_0}\right) \right)} \text{,}\\
y(t)
&=
- \frac{1}{4}\biggl(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(y_0-r_0\right)\operatorname{ln}\biggl(\left(\frac{x(t)}{x_0}\right)^2\biggr)-r_0+3y_0\biggr)\\
+ \frac{1}{4}\biggl(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(y_0-r_0\right)\operatorname{ln}\biggl(\left(\frac{x(t)}{x_0}\right)^2\biggr)-r_0+3y_0\biggr) \text{,}\\
\chi
&=
- \frac{r_0+y_0}{r_0-y_0}, \quad
+ \frac{r_0+y_0}{r_0-y_0}\text{,} \quad
\eta
=
- \left(\frac{x}{x_0}\right)^2,\quad
+ \left(\frac{x}{x_0}\right)^2 \quad\text{und}\quad
r_0
=
\sqrt{x_0^2+y_0^2}
- \text{,}
\end{align}
%
+sind,
beschrieben werden.
Der Verfolger ist durch
\begin{equation}
v(t)
=
\left( \begin{array}{c} x(t) \\ y(t) \end{array} \right)
- \text{.}
\end{equation}
%
parametrisiert, wobei $y(t)$ viel komplexer ist als $x(t)$.
@@ -238,14 +237,15 @@ Die Ortsvektoren der Punkte können wiederum mit
\begin{align}
v
&=
- t\cdot\left(\begin{array}{c} \cos (\alpha) \\ \sin (\alpha) \end{array}\right) +\left(\begin{array}{c} x_0 \\ y_0 \end{array}\right)
+ t\cdot\left(\begin{array}{c} \cos (\alpha) \\ \sin (\alpha) \end{array}\right) +\left(\begin{array}{c} x_0 \\ 0 \end{array}\right)
\\
z
&=
\left(\begin{array}{c} 0 \\ t \end{array}\right)
\end{align}
beschrieben werden.
-Da der Abstand
+$x_0$ ist der Abstand bei $t=0$, damit alle möglichen Fälle untersucht werden können.
+Da der Abstand allgemein
\begin{equation}
a
=
@@ -266,7 +266,7 @@ Der Abstand im Quadrat abgeleitet nach der Zeit ist
\begin{equation}
\frac{d a^2}{d t}
=
- 2(t\cdot\cos (\alpha)+x_0)\cdot\cos(\alpha)(\alpha)+2t(\sin(\alpha)-1)^2
+ 2(t\cdot\cos (\alpha)+x_0)\cdot\cos(\alpha)+2t(\sin(\alpha)-1)^2
\text{.}
\end{equation}
Da nur die unmittelbar benachbarten Punkten von Interesse sind, wird die Ableitung für $t=0$ untersucht. Dabei kann die Ableitung in