aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/parzyl/teil0.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/parzyl/teil0.tex')
-rw-r--r--buch/papers/parzyl/teil0.tex29
1 files changed, 15 insertions, 14 deletions
diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex
index 8be936d..3bf9257 100644
--- a/buch/papers/parzyl/teil0.tex
+++ b/buch/papers/parzyl/teil0.tex
@@ -19,8 +19,8 @@ Die partielle Differentialgleichung
\begin{equation}
\Delta f = \lambda f
\end{equation}
-ist als Helmholtz-Gleichung bekannt und beschreibt das Eigenwert Problem für den Laplace-Operator.
-Sie ist eine der Gleichungen welche auftritt wenn die Wellengleichung
+ist als Helmholtz-Gleichung bekannt und beschreibt das Eigenwertproblem für den Laplace-Operator.
+Sie ist eine der Gleichungen, welche auftritt, wenn die Wellengleichung
\begin{equation}
\left ( \nabla^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2} \right ) u(\textbf{r},t)
=
@@ -73,34 +73,35 @@ Das parabolischen Zylinderkoordinatensystem \cite{parzyl:coordinates} ist ein kr
bei dem parabolische Zylinder die Koordinatenflächen bilden.
Die Koordinate $(\sigma, \tau, z)$ sind in kartesischen Koordinaten ausgedrückt mit
\begin{align}
- x & = \sigma \tau \\
+ x & = \frac{1}{2}\left(\tau^2 - \sigma^2\right) \\
\label{parzyl:coordRelationsa}
- y & = \frac{1}{2}\left(\tau^2 - \sigma^2\right) \\
+ y & = \sigma \tau\\
z & = z.
\label{parzyl:coordRelationse}
\end{align}
-Wird $\tau$ oder $\sigma$ konstant gesetzt, resultieren die Parabeln
+Wird $\sigma$ oder $\tau$ konstant gesetzt, resultieren die Parabeln
\begin{equation}
- y = \frac{1}{2} \left( \frac{x^2}{\sigma^2} - \sigma^2 \right)
+ x = \frac{1}{2} \left( \frac{y^2}{\sigma^2} - \sigma^2 \right)
\end{equation}
und
\begin{equation}
- y = \frac{1}{2} \left( -\frac{x^2}{\tau^2} + \tau^2 \right).
+ x = \frac{1}{2} \left( -\frac{y^2}{\tau^2} + \tau^2 \right).
\end{equation}
\begin{figure}
\centering
- \includegraphics[scale=0.4]{papers/parzyl/img/koordinaten.png}
- \caption{Das parabolische Koordinatensystem. Die roten Parabeln haben ein
- konstantes $\sigma$ und die grünen ein konstantes $\tau$.}
+ \includegraphics[scale=0.32]{papers/parzyl/img/coordinates.png}
+ \caption{Das parabolische Koordinatensystem. Die grünen Parabeln haben ein
+ konstantes $\sigma$ und die roten ein konstantes $\tau$.}
\label{parzyl:fig:cordinates}
\end{figure}
-Abbildung \ref{parzyl:fig:cordinates} zeigt das Parabolische Koordinatensystem.
+Abbildung \ref{parzyl:fig:cordinates} zeigt das parabolische Koordinatensystem.
Das parabolische Zylinderkoordinatensystem entsteht wenn die Parabeln aus der
Ebene gezogen werden.
+Die Flächen mit $\tau = 0$ oder $\sigma = 0$ stellen somit Halbebenen entlang der $z$-Achse dar.
Um in diesem Koordinatensystem integrieren und differenzieren zu
-können braucht es die Skalierungsfaktoren $h_{\tau}$, $h_{\sigma}$ und $h_{z}$.
+können braucht es die Skalierungsfaktoren $h_{\tau}$, $h_{\sigma}$ und $h_{z}$ \cite{parzyl:scalefac}.
Eine infinitessimal kleine Distanz $ds$ zwischen zwei Punkten
kann im kartesischen Koordinatensystem mit
@@ -123,11 +124,11 @@ von \eqref{parzyl:coordRelationsa} - \eqref{parzyl:coordRelationse} als
dx &= \frac{\partial x }{\partial \sigma} d\sigma +
\frac{\partial x }{\partial \tau} d\tau +
\frac{\partial x }{\partial \tilde{z}} d \tilde{z}
- = \tau d\sigma + \sigma d \tau \\
+ = \tau d\tau - \sigma d \sigma \\
dy &= \frac{\partial y }{\partial \sigma} d\sigma +
\frac{\partial y }{\partial \tau} d\tau +
\frac{\partial y }{\partial \tilde{z}} d \tilde{z}
- = \tau d\tau - \sigma d \sigma \\
+ = \tau d\sigma + \sigma d \tau \\
dz &= \frac{\partial \tilde{z} }{\partial \sigma} d\sigma +
\frac{\partial \tilde{z} }{\partial \tau} d\tau +
\frac{\partial \tilde{z} }{\partial \tilde{z}} d \tilde{z}