aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/parzyl/teil0.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/parzyl/teil0.tex')
-rw-r--r--buch/papers/parzyl/teil0.tex17
1 files changed, 8 insertions, 9 deletions
diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex
index 065c077..c97f5a0 100644
--- a/buch/papers/parzyl/teil0.tex
+++ b/buch/papers/parzyl/teil0.tex
@@ -30,12 +30,11 @@ mit Hilfe von Separation
\begin{equation}
u(\textbf{r},t) = A(\textbf{r})T(t)
\end{equation}
-in zwei Differentialgleichungen aufgeteilt wird. Die Helmholtz-Gleichung ist der Teil,
-welcher zeitunabhängig ist
+in zwei Differentialgleichungen aufgeteilt wird. Die Helmholtz-Gleichung ist der Teil
\begin{equation}
- \nabla^2 A(\textbf{r}) = \lambda A(\textbf{r}).
+ \nabla^2 A(\textbf{r}) = \lambda A(\textbf{r}),
\end{equation}
-
+welcher zeitunabhängig ist.
%\subsection{Laplace Gleichung}
%Die partielle Differentialgleichung
%\begin{equation}
@@ -71,7 +70,7 @@ welcher zeitunabhängig ist
\label{parzyl:subsection:finibus}}
Das parabolischen Zylinderkoordinatensystem \cite{parzyl:coordinates} ist ein krummliniges Koordinatensystem,
bei dem parabolische Zylinder die Koordinatenflächen bilden.
-Die Koordinate $(\sigma, \tau, z)$ sind in kartesischen Koordinaten ausgedrückt mit
+Die Koordinate $(\sigma, \tau, z)$ sind in kartesischen Koordinaten ausgedrückt durch
\begin{align}
x & = \sigma \tau \\
\label{parzyl:coordRelationsa}
@@ -102,8 +101,8 @@ Ebene gezogen werden.
Um in diesem Koordinatensystem integrieren und differenzieren zu
können braucht es die Skalierungsfaktoren $h_{\tau}$, $h_{\sigma}$ und $h_{z}$ \cite{parzyl:scalefac}.
-Eine infinitessimal kleine Distanz $ds$ zwischen zwei Punkten
-kann im kartesischen Koordinatensystem mit
+Eine infinitesimal kleine Distanz $ds$ zwischen zwei Punkten
+kann im kartesischen Koordinatensystem als
\begin{equation}
\left(ds\right)^2 = \left(dx\right)^2 + \left(dy\right)^2 +
\left(dz\right)^2
@@ -187,7 +186,7 @@ gelöst wird.
% +
% \frac{\partial^2}{\partial z^2}.
%\end{equation}
-Mit dem Laplace Operator aus \eqref{parzyl:eq:laplaceInParZylCor} lautet die Helmholtz Gleichung
+Mit dem Laplace Operator aus \eqref{parzyl:eq:laplaceInParZylCor} lautet die Helmholtz-Gleichung
\begin{equation}
\Delta f(\sigma, \tau, z)
=
@@ -244,7 +243,7 @@ und
=
0
\end{equation}
-führt.
+führt. $\lambda$ und $\mu$ sind dabei die Separationskonstanten.