aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/parzyl/teil2.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/parzyl/teil2.tex')
-rw-r--r--buch/papers/parzyl/teil2.tex29
1 files changed, 15 insertions, 14 deletions
diff --git a/buch/papers/parzyl/teil2.tex b/buch/papers/parzyl/teil2.tex
index 4af6860..573432a 100644
--- a/buch/papers/parzyl/teil2.tex
+++ b/buch/papers/parzyl/teil2.tex
@@ -19,7 +19,7 @@ Jede komplexe Funktion $F(z)$ kann geschrieben werden als
\begin{equation}
F(s) = U(x,y) + iV(x,y) \qquad s \in \mathbb{C}; x,y \in \mathbb{R}.
\end{equation}
-Dabei muss gelten, falls die Funktion differenzierbar ist, dass
+Dabei müssen, falls die Funktion differenzierbar ist, die Cauchy-Riemann Differentialgleichungen
\begin{equation}
\frac{\partial U(x,y)}{\partial x}
=
@@ -27,8 +27,9 @@ Dabei muss gelten, falls die Funktion differenzierbar ist, dass
\qquad
\frac{\partial V(x,y)}{\partial x}
=
- -\frac{\partial U(x,y)}{\partial y}.
+ -\frac{\partial U(x,y)}{\partial y}
\end{equation}
+gelten.
Aus dieser Bedingung folgt
\begin{equation}
\label{parzyl_e_feld_zweite_ab}
@@ -53,7 +54,7 @@ Der Zusammenhang zum elektrischen Feld ist jetzt, dass das Potential an einem qu
\begin{equation}
\nabla^2\phi(x,y) = 0.
\end{equation}
-Dies ist eine Bedingung welche differenzierbare Funktionen, wie in Gleichung \ref{parzyl_e_feld_zweite_ab} gezeigt wird, bereits besitzen.
+Dies ist eine Bedingung welche differenzierbare Funktionen, wie in Gleichung \eqref{parzyl_e_feld_zweite_ab} gezeigt wird, bereits besitzen.
Nun kann zum Beispiel $U(x,y)$ als das Potential angeschaut werden
\begin{equation}
\phi(x,y) = U(x,y).
@@ -62,7 +63,8 @@ Orthogonal zum Potential ist das elektrische Feld
\begin{equation}
E(x,y) = V(x,y).
\end{equation}
-Um nun zu den parabolische Zylinderkoordinaten zu gelangen muss nur noch eine geeignete komplexe Funktion $F(s)$ gefunden werden,
+Um nun zu den parabolische Zylinderkoordinaten zu gelangen muss nur noch eine geeignete
+komplexe Funktion $F(s)$ gefunden werden,
welche eine semi-infinite Platte beschreiben kann.
Die gesuchte Funktion in diesem Fall ist
\begin{equation}
@@ -81,23 +83,22 @@ Dies kann umgeformt werden zu
i\underbrace{\sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}}_{V(x,y)}
.
\end{equation}
-Die Äquipotentialflächen können nun betrachtet werden, indem man die Funktion welche das Potential beschreibt gleich eine Konstante setzt,
+Die Äquipotentialflächen können nun betrachtet werden,
+indem man die Funktion, welche das Potential beschreibt, gleich eine Konstante setzt,
\begin{equation}
- \sigma = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}},
+ \sigma = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}.
\end{equation}
-und die Flächen mit der gleichen elektrischen Feldstärke können als
+Die Flächen mit der gleichen elektrischen Feldstärke können als
\begin{equation}
\tau = V(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}
\end{equation}
-beschrieben werden. Diese zwei Gleichungen zeigen nun wie man vom kartesischen Koordinatensystem ins parabolische Zylinderkoordinatensystem kommt. Werden diese Formeln nun nach x und y aufgelöst so beschreibe sie, wie man aus dem parabolischen Zylinderkoordinatensystem zurück ins kartesische rechnen kann
+beschrieben werden. Diese zwei Gleichungen zeigen nun, wie man vom
+kartesischen Koordinatensystem ins parabolische Zylinderkoordinatensystem kommt.
+Werden diese Formeln nun nach $x$ und $y$ aufgelöst
\begin{equation}
x = \sigma \tau,
\end{equation}
\begin{equation}
- y = \frac{1}{2}\left ( \tau^2 - \sigma^2 \right )
+ y = \frac{1}{2}\left ( \tau^2 - \sigma^2 \right ),
\end{equation}
-
-
-
-
-
+so beschreibe sie, wie man aus dem parabolischen Zylinderkoordinatensystem zurück ins kartesische rechnen kann. \ No newline at end of file