aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/parzyl
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/parzyl')
-rw-r--r--buch/papers/parzyl/images/Makefile16
-rw-r--r--buch/papers/parzyl/images/common.inc64
-rw-r--r--buch/papers/parzyl/images/halfplane.jpgbin0 -> 200681 bytes
-rw-r--r--buch/papers/parzyl/images/halfplane.pdfbin0 -> 208606 bytes
-rw-r--r--buch/papers/parzyl/images/halfplane.pngbin0 -> 473623 bytes
-rw-r--r--buch/papers/parzyl/images/halfplane.pov201
-rw-r--r--buch/papers/parzyl/images/halfplane.tex41
-rw-r--r--buch/papers/parzyl/img/Plane_2D.pngbin0 -> 209118 bytes
-rw-r--r--buch/papers/parzyl/img/coordinates.pngbin0 -> 1215422 bytes
-rw-r--r--buch/papers/parzyl/references.bib9
-rw-r--r--buch/papers/parzyl/teil0.tex29
-rw-r--r--buch/papers/parzyl/teil1.tex14
-rw-r--r--buch/papers/parzyl/teil2.tex70
-rw-r--r--buch/papers/parzyl/teil3.tex14
14 files changed, 411 insertions, 47 deletions
diff --git a/buch/papers/parzyl/images/Makefile b/buch/papers/parzyl/images/Makefile
new file mode 100644
index 0000000..4bd13ec
--- /dev/null
+++ b/buch/papers/parzyl/images/Makefile
@@ -0,0 +1,16 @@
+#
+# Makefile to build 3d images
+#
+# (c) 2022 Prof Dr Andreas Müller
+#
+
+all: halfplane.pdf
+
+halfplane.pdf: halfplane.tex halfplane.jpg
+ pdflatex halfplane.tex
+halfplane.png: halfplane.pov
+ povray +A0.1 -W1920 -H1080 -Ohalfplane.png halfplane.pov
+halfplane.jpg: halfplane.png Makefile
+ convert -extract 1280x1080+340+0 halfplane.png \
+ -density 300 -units PixelsPerInch halfplane.jpg
+
diff --git a/buch/papers/parzyl/images/common.inc b/buch/papers/parzyl/images/common.inc
new file mode 100644
index 0000000..28aed2b
--- /dev/null
+++ b/buch/papers/parzyl/images/common.inc
@@ -0,0 +1,64 @@
+//
+// common.inc -- some common useful tools for drawing 3d images
+//
+// (c) 2018 Prof Dr Andreas Müller, Hochschule Rapperswil
+//
+
+//
+// draw a right angle quarter circle at point <o> with legs <v1> and <v2> and
+// color <c>
+//
+#declare rechterwinkelradius = 0.5;
+#declare rechterwinkelthickness = 0.01;
+#macro rechterwinkel(o, v1, v2, c)
+intersection {
+ sphere { o, rechterwinkelradius }
+ #declare rnormale = vnormalize(vcross(v1, v2));
+ plane { rnormale, vdot(o, rnormale) + rechterwinkelthickness * rechterwinkelradius / 0.5 }
+ plane { -rnormale, -vdot(o, rnormale) + rechterwinkelthickness * rechterwinkelradius / 0.5 }
+ plane { -v1, -vdot(o, v1) }
+ plane { -v2, -vdot(o, v2) }
+ pigment {
+ color c
+ }
+}
+sphere { o + 0.45 * (vnormalize(v1) +vnormalize(v2)) * rechterwinkelradius,
+ 0.05 * rechterwinkelradius / 0.5
+ pigment {
+ color c
+ }
+}
+#end
+
+//
+// draw an arrow from <from> to <to> with thickness <arrowthickness> with
+// color <c>
+//
+#macro arrow(from, to, arrowthickness, c)
+ #declare arrowdirection = vnormalize(to - from);
+ #declare arrowlength = vlength(to - from);
+ union {
+ sphere {
+ from, 1.1 * arrowthickness
+ }
+ cylinder {
+ from,
+ from + (arrowlength - 5 * arrowthickness) * arrowdirection,
+ arrowthickness
+ }
+ cone {
+ from + (arrowlength - 5 * arrowthickness) * arrowdirection,
+ 2 * arrowthickness,
+ to,
+ 0
+ }
+ pigment {
+ color c
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+ }
+#end
+
diff --git a/buch/papers/parzyl/images/halfplane.jpg b/buch/papers/parzyl/images/halfplane.jpg
new file mode 100644
index 0000000..8cb5ae3
--- /dev/null
+++ b/buch/papers/parzyl/images/halfplane.jpg
Binary files differ
diff --git a/buch/papers/parzyl/images/halfplane.pdf b/buch/papers/parzyl/images/halfplane.pdf
new file mode 100644
index 0000000..7275810
--- /dev/null
+++ b/buch/papers/parzyl/images/halfplane.pdf
Binary files differ
diff --git a/buch/papers/parzyl/images/halfplane.png b/buch/papers/parzyl/images/halfplane.png
new file mode 100644
index 0000000..5beefa0
--- /dev/null
+++ b/buch/papers/parzyl/images/halfplane.png
Binary files differ
diff --git a/buch/papers/parzyl/images/halfplane.pov b/buch/papers/parzyl/images/halfplane.pov
new file mode 100644
index 0000000..419bb67
--- /dev/null
+++ b/buch/papers/parzyl/images/halfplane.pov
@@ -0,0 +1,201 @@
+//
+// 3dimage.pov
+//
+// (c) 2022 Prof Dr Andreas Müller
+//
+#version 3.7;
+#include "colors.inc"
+#include "skies.inc"
+#include "common.inc"
+
+global_settings {
+ assumed_gamma 1
+}
+
+#declare imagescale = 0.63;
+#declare ar = 0.02;
+
+#declare Cameracenter = <5,3,-4>;
+#declare Worldpoint = <0,-0.80, 0>;
+#declare Lightsource = < 7,10,-3>;
+#declare Lightdirection = vnormalize(Lightsource - Worldpoint);
+#declare Lightaxis1 = vnormalize(vcross(Lightdirection, <0,1,0>));
+#declare Lightaxis2 = vnormalize(vcross(Lightaxis1, Lightdirection));
+
+camera {
+ location Cameracenter
+ look_at Worldpoint
+ right 16/9 * x * imagescale
+ up y * imagescale
+}
+
+light_source {
+ Lightsource color White
+ area_light Lightaxis1 Lightaxis2, 10, 10
+ adaptive 1
+ jitter
+}
+
+sky_sphere {
+ pigment {
+ color White
+ }
+}
+
+arrow( <-2.1, 0, 0 >, < 2.2, 0, 0 >, ar, White)
+arrow( < 0, -1.1, 0 >, < 0, 1.3, 0 >, ar, White)
+arrow( < 0, 0, -2 >, < 0, 0, 2.2 >, ar, White)
+
+#declare planecolor = rgb<0.2,0.6,1.0>;
+#declare r = 0.01;
+
+#macro planebox()
+ box { <-2.1,-1.1,-2.1>, <0,1.1,2.1> }
+#end
+
+intersection {
+ plane { <0, 0, 1>, 0.001 }
+ plane { <0, 0, -1>, 0.001 }
+ planebox()
+ pigment {
+ color planecolor transmit 0.3
+ }
+ finish {
+ metallic
+ specular 0.95
+ }
+}
+
+#declare Xstep = 0.2;
+
+intersection {
+ union {
+ #declare X = 0;
+ #while (X > -2.5)
+ cylinder { <X,-3,0>, <X,+3,0>, r }
+ #declare X = X - Xstep;
+ #end
+
+ #declare Y = Xstep;
+ #while (Y < 2.5)
+ cylinder { <-3, Y, 0>, <0, Y, 0>, r }
+ cylinder { <-3, -Y, 0>, <0, -Y, 0>, r }
+ #declare Y = Y + Xstep;
+ #end
+ }
+ planebox()
+ pigment {
+ color planecolor
+ }
+ finish {
+ metallic
+ specular 0.95
+ }
+}
+
+#declare parammin = -4;
+#declare parammax = 4;
+#declare paramsteps = 100;
+#declare paramstep = (parammax - parammin) / paramsteps;
+
+#macro punkt(sigma, tau, Z)
+ <
+ 0.5 * (tau*tau - sigma*sigma)
+ Z,
+ sigma * tau,
+ >
+#end
+
+#macro sigmasurface(sigma, farbe)
+ #declare taumin1 = 2/sigma;
+ #declare taumin2 = sqrt(4+sigma*sigma);
+ #if (taumin1 > taumin2)
+ #declare taumin = -taumin2;
+ #else
+ #declare taumin = -taumin1;
+ #end
+
+ mesh {
+ #declare tau = taumin;
+ #declare taumax = -taumin;
+ #declare taustep = (taumax - taumin) / paramsteps;
+ #while (tau < taumax - taustep/2)
+ triangle {
+ punkt(sigma, tau, -1),
+ punkt(sigma, tau, 0),
+ punkt(sigma, tau + taustep, -1)
+ }
+ triangle {
+ punkt(sigma, tau + taustep, -1),
+ punkt(sigma, tau + taustep, 0),
+ punkt(sigma, tau, 0)
+ }
+ #declare tau = tau + taustep;
+ #end
+ pigment {
+ color farbe
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+ }
+
+ union {
+ #declare tau = taumin;
+ #declare taumax = -taumin;
+ #declare taustep = (taumax - taumin) / paramsteps;
+ #while (tau < taumax - taustep/2)
+ sphere { punkt(sigma, tau, 0), r }
+ cylinder {
+ punkt(sigma, tau, 0),
+ punkt(sigma, tau + taustep, 0),
+ r
+ }
+ #declare tau = tau + taustep;
+ #end
+ sphere { punkt(sigma, tau, 0), r }
+ pigment {
+ color farbe
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+
+ }
+#end
+
+#declare greensurfacecolor = rgb<0.6,1.0,0.6>;
+#declare redsurfacecolor = rgb<1.0,0.6,0.6>;
+
+sigmasurface(0.25, greensurfacecolor)
+sigmasurface(0.5, greensurfacecolor)
+sigmasurface(0.75, greensurfacecolor)
+sigmasurface(1, greensurfacecolor)
+sigmasurface(1.25, greensurfacecolor)
+sigmasurface(1.5, greensurfacecolor)
+sigmasurface(1.75, greensurfacecolor)
+sigmasurface(2, greensurfacecolor)
+
+union {
+ sigmasurface(0.25, redsurfacecolor)
+ sigmasurface(0.5, redsurfacecolor)
+ sigmasurface(0.75, redsurfacecolor)
+ sigmasurface(1.00, redsurfacecolor)
+ sigmasurface(1.25, redsurfacecolor)
+ sigmasurface(1.5, redsurfacecolor)
+ sigmasurface(1.75, redsurfacecolor)
+ sigmasurface(2, redsurfacecolor)
+ rotate <0, 180, 0>
+}
+
+box { <-2,-1,-2>, <2,-0.99,2>
+ pigment {
+ color rgb<1.0,0.8,0.6> transmit 0.8
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
diff --git a/buch/papers/parzyl/images/halfplane.tex b/buch/papers/parzyl/images/halfplane.tex
new file mode 100644
index 0000000..e470057
--- /dev/null
+++ b/buch/papers/parzyl/images/halfplane.tex
@@ -0,0 +1,41 @@
+%
+% halfplane.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{times}
+\usepackage{amsmath}
+\usepackage{txfonts}
+\usepackage[utf8]{inputenc}
+\usepackage{graphics}
+\usetikzlibrary{arrows,intersections,math}
+\usepackage{ifthen}
+\begin{document}
+
+\newboolean{showgrid}
+\setboolean{showgrid}{false}
+\def\breite{5}
+\def\hoehe{4}
+
+\begin{tikzpicture}[>=latex,thick]
+
+% Povray Bild
+\node at (0,0) {\includegraphics[width=10cm]{halfplane.jpg}};
+
+% Gitter
+\ifthenelse{\boolean{showgrid}}{
+\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe);
+\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe);
+\draw (-\breite,-\hoehe) grid (\breite, \hoehe);
+\fill (0,0) circle[radius=0.05];
+}{}
+
+\node at (0,3.7) {$z$};
+\node at (3.3,-0.3) {$x$};
+\node at (2.7,2.5) {$y$};
+
+\end{tikzpicture}
+
+\end{document}
+
diff --git a/buch/papers/parzyl/img/Plane_2D.png b/buch/papers/parzyl/img/Plane_2D.png
new file mode 100644
index 0000000..f55e3cf
--- /dev/null
+++ b/buch/papers/parzyl/img/Plane_2D.png
Binary files differ
diff --git a/buch/papers/parzyl/img/coordinates.png b/buch/papers/parzyl/img/coordinates.png
new file mode 100644
index 0000000..0ea3701
--- /dev/null
+++ b/buch/papers/parzyl/img/coordinates.png
Binary files differ
diff --git a/buch/papers/parzyl/references.bib b/buch/papers/parzyl/references.bib
index 390d5ed..9639d0b 100644
--- a/buch/papers/parzyl/references.bib
+++ b/buch/papers/parzyl/references.bib
@@ -65,4 +65,13 @@
year = {2022},
month = {8},
day = {17}
+}
+
+@online{parzyl:scalefac,
+ title = {An introduction to curvlinear orthogonal coordinates},
+ url = {http://dslavsk.sites.luc.edu/courses/phys301/classnotes/scalefactorscomplete.pdf},
+ date = {2022-08-18},
+ year = {2022},
+ month = {08},
+ day = {18}
} \ No newline at end of file
diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex
index 8be936d..3bf9257 100644
--- a/buch/papers/parzyl/teil0.tex
+++ b/buch/papers/parzyl/teil0.tex
@@ -19,8 +19,8 @@ Die partielle Differentialgleichung
\begin{equation}
\Delta f = \lambda f
\end{equation}
-ist als Helmholtz-Gleichung bekannt und beschreibt das Eigenwert Problem für den Laplace-Operator.
-Sie ist eine der Gleichungen welche auftritt wenn die Wellengleichung
+ist als Helmholtz-Gleichung bekannt und beschreibt das Eigenwertproblem für den Laplace-Operator.
+Sie ist eine der Gleichungen, welche auftritt, wenn die Wellengleichung
\begin{equation}
\left ( \nabla^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2} \right ) u(\textbf{r},t)
=
@@ -73,34 +73,35 @@ Das parabolischen Zylinderkoordinatensystem \cite{parzyl:coordinates} ist ein kr
bei dem parabolische Zylinder die Koordinatenflächen bilden.
Die Koordinate $(\sigma, \tau, z)$ sind in kartesischen Koordinaten ausgedrückt mit
\begin{align}
- x & = \sigma \tau \\
+ x & = \frac{1}{2}\left(\tau^2 - \sigma^2\right) \\
\label{parzyl:coordRelationsa}
- y & = \frac{1}{2}\left(\tau^2 - \sigma^2\right) \\
+ y & = \sigma \tau\\
z & = z.
\label{parzyl:coordRelationse}
\end{align}
-Wird $\tau$ oder $\sigma$ konstant gesetzt, resultieren die Parabeln
+Wird $\sigma$ oder $\tau$ konstant gesetzt, resultieren die Parabeln
\begin{equation}
- y = \frac{1}{2} \left( \frac{x^2}{\sigma^2} - \sigma^2 \right)
+ x = \frac{1}{2} \left( \frac{y^2}{\sigma^2} - \sigma^2 \right)
\end{equation}
und
\begin{equation}
- y = \frac{1}{2} \left( -\frac{x^2}{\tau^2} + \tau^2 \right).
+ x = \frac{1}{2} \left( -\frac{y^2}{\tau^2} + \tau^2 \right).
\end{equation}
\begin{figure}
\centering
- \includegraphics[scale=0.4]{papers/parzyl/img/koordinaten.png}
- \caption{Das parabolische Koordinatensystem. Die roten Parabeln haben ein
- konstantes $\sigma$ und die grünen ein konstantes $\tau$.}
+ \includegraphics[scale=0.32]{papers/parzyl/img/coordinates.png}
+ \caption{Das parabolische Koordinatensystem. Die grünen Parabeln haben ein
+ konstantes $\sigma$ und die roten ein konstantes $\tau$.}
\label{parzyl:fig:cordinates}
\end{figure}
-Abbildung \ref{parzyl:fig:cordinates} zeigt das Parabolische Koordinatensystem.
+Abbildung \ref{parzyl:fig:cordinates} zeigt das parabolische Koordinatensystem.
Das parabolische Zylinderkoordinatensystem entsteht wenn die Parabeln aus der
Ebene gezogen werden.
+Die Flächen mit $\tau = 0$ oder $\sigma = 0$ stellen somit Halbebenen entlang der $z$-Achse dar.
Um in diesem Koordinatensystem integrieren und differenzieren zu
-können braucht es die Skalierungsfaktoren $h_{\tau}$, $h_{\sigma}$ und $h_{z}$.
+können braucht es die Skalierungsfaktoren $h_{\tau}$, $h_{\sigma}$ und $h_{z}$ \cite{parzyl:scalefac}.
Eine infinitessimal kleine Distanz $ds$ zwischen zwei Punkten
kann im kartesischen Koordinatensystem mit
@@ -123,11 +124,11 @@ von \eqref{parzyl:coordRelationsa} - \eqref{parzyl:coordRelationse} als
dx &= \frac{\partial x }{\partial \sigma} d\sigma +
\frac{\partial x }{\partial \tau} d\tau +
\frac{\partial x }{\partial \tilde{z}} d \tilde{z}
- = \tau d\sigma + \sigma d \tau \\
+ = \tau d\tau - \sigma d \sigma \\
dy &= \frac{\partial y }{\partial \sigma} d\sigma +
\frac{\partial y }{\partial \tau} d\tau +
\frac{\partial y }{\partial \tilde{z}} d \tilde{z}
- = \tau d\tau - \sigma d \sigma \\
+ = \tau d\sigma + \sigma d \tau \\
dz &= \frac{\partial \tilde{z} }{\partial \sigma} d\sigma +
\frac{\partial \tilde{z} }{\partial \tau} d\tau +
\frac{\partial \tilde{z} }{\partial \tilde{z}} d \tilde{z}
diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex
index 13d8109..0e1ad1b 100644
--- a/buch/papers/parzyl/teil1.tex
+++ b/buch/papers/parzyl/teil1.tex
@@ -13,13 +13,13 @@ Die Lösung ist somit
i(z)
=
A\cos{
- \left (
- \sqrt{\lambda + \mu}z
+ \left ( z
+ \sqrt{\lambda + \mu}
\right )}
+
B\sin{
- \left (
- \sqrt{\lambda + \mu}z
+ \left ( z
+ \sqrt{\lambda + \mu}
\right )}.
\end{equation}
Die Differentialgleichungen \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} werden in \cite{parzyl:whittaker}
@@ -51,7 +51,7 @@ mit Hilfe der Whittaker Gleichung gelöst.
M_{k, -m} \left(x\right)
\end{equation*}
gehören zu den Whittaker Funktionen und sind Lösungen
- von der Whittaker Differentialgleichung
+ der Whittaker Differentialgleichung
\begin{equation}
\frac{d^2W}{d x^2} +
\biggl( -\frac{1}{4} + \frac{k}{x} + \frac{\frac{1}{4} - m^2}{x^2} \biggr) W = 0.
@@ -94,8 +94,8 @@ $w$ als Lösung haben.
% ({\textstyle \frac{3}{4}}
% - k, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2).
%\end{align}
-
-In der Literatur gibt es verschiedene Standartlösungen für
+\subsection{Standardlösungen}
+In der Literatur gibt es verschiedene Standardlösungen für
\eqref{parzyl:eq:weberDiffEq}, wobei die Differentialgleichung jeweils
unterschiedlich geschrieben wird.
Whittaker und Watson zeigen in \cite{parzyl:whittaker} die Lösung
diff --git a/buch/papers/parzyl/teil2.tex b/buch/papers/parzyl/teil2.tex
index 573432a..0cf4283 100644
--- a/buch/papers/parzyl/teil2.tex
+++ b/buch/papers/parzyl/teil2.tex
@@ -9,15 +9,27 @@
Die parabolischen Zylinderkoordinaten tauchen auf, wenn man das elektrische Feld einer semi-infiniten Platte, wie in Abbildung \ref{parzyl:fig:leiterplatte} gezeigt, finden will.
\begin{figure}
- \centering
- \includegraphics[width=0.9\textwidth]{papers/parzyl/img/plane.pdf}
- \caption{Semi-infinite Leiterplatte}
- \label{parzyl:fig:leiterplatte}
+ \centering
+ \begin{minipage}{.7\textwidth}
+ \centering
+ \includegraphics[width=\textwidth]{papers/parzyl/images/halfplane.pdf}
+ \caption{Semi-infinite Leiterplatte}
+ \label{parzyl:fig:leiterplatte}
+ \end{minipage}%
+ \begin{minipage}{.25\textwidth}
+ \centering
+ \includegraphics[width=\textwidth]{papers/parzyl/img/Plane_2D.png}
+ \caption{Semi-infinite Leiterplatte dargestellt in 2D}
+ \label{parzyl:fig:leiterplatte_2d}
+ \end{minipage}
\end{figure}
-Das dies so ist kann im zwei Dimensionalen mit Hilfe von komplexen Funktionen gezeigt werden. Die Platte ist dann nur eine Linie, was man in Abbildung TODO sieht.
+Die Äquipotentiallinien sind dabei in rot ,die des elektrischen Feldes in grün und semi-infinite Platte ist in blau dargestellt.
+Das dies so ist kann im Zweidimensionalen mit Hilfe von komplexen Funktionen gezeigt werden. Die Platte ist dann nur eine Halbgerade, was man in Abbildung \ref{parzyl:fig:leiterplatte_2d} sieht.
+
+
Jede komplexe Funktion $F(z)$ kann geschrieben werden als
\begin{equation}
- F(s) = U(x,y) + iV(x,y) \qquad s \in \mathbb{C}; x,y \in \mathbb{R}.
+ F(s) = U(x,y) + iV(x,y) \quad s = x + iy \qquad s \in \mathbb{C}; x,y \in \mathbb{R}.
\end{equation}
Dabei müssen, falls die Funktion differenzierbar ist, die Cauchy-Riemann Differentialgleichungen
\begin{equation}
@@ -49,23 +61,31 @@ Aus dieser Bedingung folgt
0
}_{\displaystyle{\nabla^2V(x,y) = 0}}.
\end{equation}
-Zusätzlich kann auch gezeigt werden, dass die Funktion $F(z)$ eine winkeltreue Abbildung ist.
+Zusätzlich kann auch gezeigt werden, dass die Funktion $F(z)$ eine winkeltreue Abbildung ist.
+
+
Der Zusammenhang zum elektrischen Feld ist jetzt, dass das Potential an einem quellenfreien Punkt gegeben ist als
\begin{equation}
\nabla^2\phi(x,y) = 0.
\end{equation}
-Dies ist eine Bedingung welche differenzierbare Funktionen, wie in Gleichung \eqref{parzyl_e_feld_zweite_ab} gezeigt wird, bereits besitzen.
+Dies ist eine Bedingung, welche differenzierbare Funktionen, wie in Gleichung \eqref{parzyl_e_feld_zweite_ab} gezeigt wird, bereits besitzen.
+
+
Nun kann zum Beispiel $U(x,y)$ als das Potential angeschaut werden
\begin{equation}
\phi(x,y) = U(x,y).
\end{equation}
-Orthogonal zum Potential ist das elektrische Feld
+Orthogonal zu den Äquipotenzialfläche sind die Feldlinien des elektrische Feld
\begin{equation}
E(x,y) = V(x,y).
\end{equation}
+
+
Um nun zu den parabolische Zylinderkoordinaten zu gelangen muss nur noch eine geeignete
komplexe Funktion $F(s)$ gefunden werden,
welche eine semi-infinite Platte beschreiben kann.
+
+
Die gesuchte Funktion in diesem Fall ist
\begin{equation}
F(s)
@@ -83,22 +103,34 @@ Dies kann umgeformt werden zu
i\underbrace{\sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}}_{V(x,y)}
.
\end{equation}
+
+
Die Äquipotentialflächen können nun betrachtet werden,
indem man die Funktion, welche das Potential beschreibt, gleich eine Konstante setzt,
\begin{equation}
- \sigma = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}.
+% \sigma = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}.
+ c_1 = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}.
\end{equation}
Die Flächen mit der gleichen elektrischen Feldstärke können als
\begin{equation}
- \tau = V(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}
+% \tau = V(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}
+ c_2 = V(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}
\end{equation}
beschrieben werden. Diese zwei Gleichungen zeigen nun, wie man vom
-kartesischen Koordinatensystem ins parabolische Zylinderkoordinatensystem kommt.
+kartesischen Koordinatensystem ins parabolische Zylinderkoordinatensystem kommt.
+%Werden diese Formeln nun nach $x$ und $y$ aufgelöst
+%\begin{equation}
+% x = \sigma \tau,
+%\end{equation}
+%\begin{equation}
+% y = \frac{1}{2}\left ( \tau^2 - \sigma^2 \right ),
+%\end{equation}
+%so beschreibe sie, wie man aus dem parabolischen Zylinderkoordinatensystem zurück ins kartesische rechnen kann.
Werden diese Formeln nun nach $x$ und $y$ aufgelöst
-\begin{equation}
- x = \sigma \tau,
-\end{equation}
-\begin{equation}
- y = \frac{1}{2}\left ( \tau^2 - \sigma^2 \right ),
-\end{equation}
-so beschreibe sie, wie man aus dem parabolischen Zylinderkoordinatensystem zurück ins kartesische rechnen kann. \ No newline at end of file
+\begin{align}
+ x &= c_1^2 - c_2^2 ,\\
+ y &= 2c_1 c_2,
+\end{align}
+so beschreiben sie mit $\tau = c_1 \sqrt{2}$ und $\sigma = c_2 \sqrt{2}$ die Beziehung
+zwischen dem parabolischen Zylinderkoordinatensystem und dem kartesischen Koordinatensystem.
+
diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex
index 166eebf..1b59ed9 100644
--- a/buch/papers/parzyl/teil3.tex
+++ b/buch/papers/parzyl/teil3.tex
@@ -12,9 +12,9 @@
%Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind,
%können auch als Potenzreihen geschrieben werden
Die parabolischen Zylinderfunktionen können auch als Potenzreihen geschrieben werden.
-Im folgenden Abschnitt werden die Terme welche nur von $n$ oder $a$ abhängig sind vernachlässigt.
-Die parabolischen Zylinderfunktionen sind Linearkombinationen aus einem geraden Teil $w_1(\alpha, x)$
-und einem ungeraden Teil $w_2(\alpha, x)$, welche als Potenzreihe
+Parabolische Zylinderfunktionen sind Linearkombinationen
+$A(\alpha)w_1(\alpha, x) + B(\alpha)w_2(\alpha, x)$ aus einem geraden Teil $w_1(\alpha, x)$
+und einem ungeraden Teil $w_2(\alpha, x)$, welche als Potenzreihen
\begin{align}
w_1(\alpha,x)
&=
@@ -51,7 +51,7 @@ und
=
xe^{-\frac{x^2}{4}}
\sum^{\infty}_{n=0}
- \frac{\left ( \frac{3}{4} - k \right )_{n}}{\left ( \frac{3}{2}\right )_{n}}
+ \frac{\left ( \frac{1}{2} + \alpha \right )_{n}}{\left ( \frac{3}{2}\right )_{n}}
\frac{\left ( \frac{1}{2} x^2\right )^n}{n!} \\
&=
e^{-\frac{x^2}{4}}
@@ -67,9 +67,9 @@ und
\end{align}
sind.
Die Potenzreihen sind in der regel unendliche Reihen.
-Es gibt allerdings die Möglichkeit für bestimmte $\alpha$ das die Terme in der Klammer gleich null werden
+Es gibt allerdings die Möglichkeit, dass für bestimmte $\alpha$ die Terme in der Klammer gleich null werden
und die Reihe somit eine endliche Anzahl $n$ Summanden hat.
-Dies geschieht bei $w_1(\alpha,x)$ falls
+Dies geschieht bei $w_1(\alpha,x)$, falls
\begin{equation}
\alpha = -n \qquad n \in \mathbb{N}_0
\end{equation}
@@ -77,7 +77,7 @@ und bei $w_2(\alpha,x)$ falls
\begin{equation}
\alpha = -\frac{1}{2} - n \qquad n \in \mathbb{N}_0.
\end{equation}
-Der Wert des von $\alpha$ ist abhängig, ob man $D_n(x)$ oder $U(a,x)$ / $V(a,x)$ verwendet.
+Der Wert von $\alpha$ ist abhängig, ob man $D_n(x)$, $U(a,x)$ oder $V(a,x)$ verwendet.
Bei $D_n(x)$ gilt $\alpha = -{\textstyle \frac{1}{2}} n$ und bei $U(a,z)$ oder $V(a,x)$ gilt
$\alpha = {\textstyle \frac{1}{2}} a + {\textstyle \frac{1}{4}}$.
\subsection{Ableitung}