aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/sturmliouville/tschebyscheff_beispiel.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/sturmliouville/tschebyscheff_beispiel.tex')
-rw-r--r--buch/papers/sturmliouville/tschebyscheff_beispiel.tex68
1 files changed, 45 insertions, 23 deletions
diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex
index e86e742..3817dc0 100644
--- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex
+++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex
@@ -1,60 +1,82 @@
%
% tschebyscheff_beispiel.tex
-% Author: Réda Haddouche
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\subsection{Tschebyscheff-Polynome\label{sub:tschebyscheff-polynome}}
-Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die Koeffizientenfunktionen die man braucht schon aufgelistet, und zwar mit
+\subsection{Sind Tschebyscheff-Polynome orthogonal zueinander?\label{sub:tschebyscheff-polynome}}
+\subsubsection*{Definition der Koeffizientenfunktion}
+Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die Koeffizientenfunktionen, die man braucht, schon aufgeliste, und zwar mit
\begin{align*}
w(x) &= \frac{1}{\sqrt{1-x^2}} \\
p(x) &= \sqrt{1-x^2} \\
- q(x) &= 0.
-\end{align*}
+ q(x) &= 0
+\end{align*}.
Da die Sturm-Liouville-Gleichung
\begin{equation}
\label{eq:sturm-liouville-equation-tscheby}
- \frac{d}{dx}\lbrack \sqrt{1-x^2} \frac{dy}{dx} \rbrack + \lbrack 0 + \lambda \frac{1}{\sqrt{1-x^2}} \rbrack y = 0
+ \frac{d}{dx} (\sqrt{1-x^2} \frac{dy}{dx}) + (0 + \lambda \frac{1}{\sqrt{1-x^2}}) y = 0
\end{equation}
nun mit den Koeffizientenfunktionen aufgestellt werden kann, bleibt die Frage, ob es sich um ein reguläres oder singuläres Sturm-Liouville-Problem handelt.
-Für das reguläre Problem laut der Definition \ref{def:reguläres_sturm-liouville-problem} muss die funktion $p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und $w(x) = \frac{1}{\sqrt{1-x^2}}$ stetig und reell sein - und sie sind es auch.
+
+\subsubsection*{regulär oder singulär?}
+Für das reguläre Problem laut der Definition \ref{def:reguläres_sturm-liouville-problem} muss die funktion $p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und $w(x) = \frac{1}{\sqrt{1-x^2}}$ stetig und reell sein --- und sie sind es auch.
Auf dem Intervall $(-1,1)$ sind die Tschebyscheff-Polynome erster Art mit Hilfe von Hyperbelfunktionen
-\[
- T_n(x) = \cos n (\arccos x).
-\]
+\begin{equation}
+ T_n(x) = \cos n (\arccos x)
+\end{equation}.
Für $x>1$ und $x<-1$ sehen die Polynome wie folgt aus:
-\[
+\begin{equation}
T_n(x) = \left\{\begin{array}{ll} \cosh (n \arccos x), & x > 1\\
- (-1)^n \cosh (n \arccos (-x)), & x<-1 \end{array}\right.,
-\]
+ (-1)^n \cosh (n \arccos (-x)), & x<-1 \end{array}\right.
+\end{equation},
jedoch ist die Orthogonalität nur auf dem Intervall $[ -1, 1]$ sichergestellt.
-Die nächste Bedingung beinhaltet, dass die Funktion $p(x)^{-1}$ und $w(x)>0$ sein müssen.
+Die nächste Bedingung beinhaltet, dass die Funktion $p(x)$ und $w(x)>0$ sein müssen.
Die Funktion
\begin{equation*}
p(x)^{-1} = \frac{1}{\sqrt{1-x^2}}
\end{equation*}
-ist die gleiche wie $w(x)$.
+ist die gleiche wie $w(x)$ und erfüllt die Bedingung.
+\subsubsection*{Randwertproblem}
Für die Verifizierung der Randbedingungen benötigt man erneut $p(x)$.
Da sich die Polynome nur auf dem Intervall $[ -1,1 ]$ orthogonal verhalten, sind $a = -1$ und $b = 1$ gesetzt.
Beim einsetzen in die Randbedingung \ref{eq:randbedingungen}, erhält man
-\[
+\begin{equation}
\begin{aligned}
- k_a y(-1) + h_a y'(-1) &= 0 \\
+ k_a y(-1) + h_a y'(-1) &= 0
k_b y(-1) + h_b y'(-1) &= 0.
\end{aligned}
-\]
-Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome (siehe \ref{sub:definiton_der_tschebyscheff-Polynome}).
+\end{equation}
+Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome (siehe \label{sub:definiton_der_tschebyscheff-Polynome}).
Es gibt zwei Arten von Tschebyscheff Polynome: die erste Art $T_n(x)$ und die zweite Art $U_n(x)$.
Jedoch beachtet man in diesem Kapitel nur die Tschebyscheff Polynome erster Art (\ref{eq:tschebyscheff-polynome}).
Die Funktion $y(x)$ wird nun mit der Funktion $T_n(x)$ ersetzt und für die Verifizierung der Randbedingung wählt man $n=2$.
Somit erhält man
-\[
+\begin{equation}
\begin{aligned}
k_a T_2(-1) + h_a T_{2}'(-1) &= k_a = 0\\
k_b T_2(1) + h_b T_{2}'(1) &= k_b = 0.
\end{aligned}
-\]
-Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab können, damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, beliebige $h_a \ne 0$ und $h_b \ne 0$ gewählt werden.
-Somit ist erneut gezeigt, dass die Randbedingungen der Tschebyscheff-Polynome auch die Sturm-Liouville-Randbedingungen erfüllt und alle daraus resultierenden Lösungen orthogonal sind.
+\end{equation}
+Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab kann man, damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, können beliebige $h_a \ne 0$ und $h_b \ne 0$ gewählt werden.
+Somit ist erneut gezeigt, dass die Randbedingungen der Tschebyscheff-Polynome auf die Sturm-Liouville-Randbedingungen erfüllt und alle daraus resultierenden Lösungen orthogonal sind.
+
+\begin{beispiel}
+ Die Gleichung \ref{eq:skalar-sturm-liouville} mit $y_m = T_1(x)$ und $y_n(x) = T_2(x)$ eingesetzt sowie $a=-1$ und $b = 1$ ergibt
+ \[
+ \int_{-1}^{1} w(x) x (2x^2-1) dx = 0.
+ \]
+\end{beispiel}
+
+
+
+
+
+
+
+
+
+
+
+