aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/sturmliouville/tschebyscheff_beispiel.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/sturmliouville/tschebyscheff_beispiel.tex')
-rw-r--r--buch/papers/sturmliouville/tschebyscheff_beispiel.tex16
1 files changed, 8 insertions, 8 deletions
diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex
index 5fb3a0c..341a358 100644
--- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex
+++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex
@@ -5,7 +5,7 @@
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\subsection{Tschebyscheff-Polynome
+\section{Beispiel: Tschebyscheff-Polynome
\label{sturmliouville:sub:tschebyscheff-polynome}}
\rhead{Tschebyscheff-Polynome}
In diesem Unterkapitel wird anhand der
@@ -16,7 +16,7 @@ Zu diesem Zweck werden die Koeffizientenfunktionen nochmals dargestellt, so dass
Sobald feststeht, ob das Problem regulär oder singulär ist, zeigt eine
kleine Rechnung, dass die Lösungen orthogonal sind.
-\subsubsection*{Definition der Koeffizientenfunktion}
+\subsection*{Definition der Koeffizientenfunktion}
Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die
Koeffizientenfunktionen, die man braucht, schon aufgelistet:
\begin{align*}
@@ -27,8 +27,8 @@ Koeffizientenfunktionen, die man braucht, schon aufgelistet:
Da die Sturm-Liouville-Gleichung
\begin{equation}
\label{eq:sturm-liouville-equation-tscheby}
- \frac{d}{dx} (\sqrt{1-x^2} \frac{dy}{dx}) +
- (0 + \lambda \frac{1}{\sqrt{1-x^2}}) y
+ \frac{d}{dx} \biggl (\sqrt{1-x^2} \frac{dy}{dx}\biggr ) +
+ \biggl (0 + \lambda \frac{1}{\sqrt{1-x^2}}\biggr ) y
=
0
\end{equation}
@@ -36,7 +36,7 @@ nun mit den Koeffizientenfunktionen aufgestellt werden kann, bleibt die Frage,
ob es sich um ein reguläres oder singuläres Sturm-Liouville-Problem handelt.
Zunächst werden jedoch die Randbedingungen betrachtet.
-\subsubsection*{Randwertproblem}
+\subsection*{Randwertproblem}
Für die Verifizierung der Randbedingungen benötigt man erneut $p(x)$.
Die Randwerte setzt man $a = -1$ und $b = 1$.
Beim Einsetzen in die Randbedingung \eqref{sturmliouville:eq:randbedingungen},
@@ -63,7 +63,7 @@ damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, beliebige
$h_a \ne 0$ und $h_b \ne 0$ gewählt werden.
Es wurde somit gezeigt, dass die Sturm-Liouville-Randbedingungen erfüllt sind.
-\subsubsection*{Handelt es sich um ein reguläres oder singuläres Problem?}
+\subsection*{Handelt es sich um ein reguläres oder singuläres Problem?}
Für das reguläre Problem muss laut der
Definition~\ref{sturmliouville:def:reguläres_sturm-liouville-problem} die funktion
$p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und
@@ -91,14 +91,14 @@ Da auch die Randbedingungen erfüllt sind, handelt es sich um ein reguläres Stu
illustriert.
Dazu verwendet man das Skalarprodukt
\[
- \int_{a}^{b} w(x) y_m y_n = 0.
+ \int_{a}^{b} w(x) y_m(x) y_n(x) = 0.
\]
mit $y_m(x) = T_1(x)$ und $y_n(x) = T_2(x)$, sowie $a=-1$ und $b = 1$.
Eigesetzt ergibt dies
\[
\begin{aligned}
\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} x (2x^2-1) dx &=
- \lbrack - \frac{\sqrt{1-x^2}(2x^2+1)}{3}\rbrack_{-1}^{1}\\
+ \biggl [ - \frac{\sqrt{1-x^2}(2x^2+1)}{3} \biggr ]_{-1}^{1}\\
&= 0.
\end{aligned}
\]