aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/sturmliouville/waermeleitung_beispiel.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/sturmliouville/waermeleitung_beispiel.tex')
-rw-r--r--buch/papers/sturmliouville/waermeleitung_beispiel.tex300
1 files changed, 199 insertions, 101 deletions
diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex
index a72c562..93a1eb0 100644
--- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex
+++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex
@@ -5,31 +5,36 @@
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\subsection{Wärmeleitung in einem Homogenen Stab}
+\section{Beispiel: Wärmeleitung in homogenem Stab}
In diesem Abschnitt wird das Problem der Wärmeleitung in einem homogenen Stab
-betrachtet und wie das Sturm-Liouville-Problem bei der Beschreibung dieses
-physikalischen Phänomenes auftritt.
+betrachtet, angeschaut wie das Sturm-Liouville-Problem bei der Beschreibung
+dieses physikalischen Phänomens auftritt und hergeleitet wie die Fourierreihe
+als Lösung des Problems zustande kommt.
Zunächst wird ein eindimensionaler homogener Stab der Länge $l$ und
-Wärmeleitkoeffizient $\kappa$ betrachtet.
-Es ergibt sich für das Wärmeleitungsproblem
-die partielle Differentialgleichung
+Wärmeleitkoeffizient $\kappa$ betrachtet, dessen initiale Wärmeverteilung durch
+$u(t=0, x)$ gegeben ist.
+Es ergibt sich für das Wärmeleitungsproblem die partielle Differentialgleichung
\begin{equation}
\label{sturmliouville:eq:example-fourier-heat-equation}
- \frac{\partial u}{\partial t} =
- \kappa \frac{\partial^{2}u}{{\partial x}^{2}},
+ \frac{\partial u(t, x)}{\partial t} =
+ \kappa \frac{\partial^{2}u(t, x)}{{\partial x}^{2}},
\end{equation}
-wobei der Stab in diesem Fall auf der $X$-Achse im Intervall $[0,l]$ liegt.
-
-Da diese Differentialgleichung das Problem allgemein für einen homogenen
-Stab beschreibt, werden zusätzliche Bedingungen benötigt, um beispielsweise
-die Lösung für einen Stab zu finden, bei dem die Enden auf konstanter
-Tempreatur gehalten werden.
+wobei der Stab in diesem Fall auf der $x$-Achse im Intervall $[0,l]$ liegt.
+
+Damit die Sturm-Liouville-Theorie auf das
+Problem~\eqref{sturmliouville:eq:example-fourier-heat-equation} angewendet
+werden kann, werden noch Randbedingungen benötigt, welche in Kürze
+vorgestellt werden.
+Aus physikalischer Sicht geben diese Randbedingungen vor, ob die Enden des
+Stabes thermisch isoliert sind oder ob sie auf konstanter Temperatur gehalten
+werden.
%
% Randbedingungen für Stab mit konstanten Endtemperaturen
%
+\subsection{Randbedingungen}
\subsubsection{Randbedingungen für Stab mit Enden auf konstanter Temperatur}
Die Enden des Stabes auf konstanter Temperatur zu halten bedeutet, dass die
@@ -52,8 +57,10 @@ als Randbedingungen.
\subsubsection{Randbedingungen für Stab mit isolierten Enden}
-Bei isolierten Enden des Stabes können beliebige Temperaturen für $x = 0$ und
-$x = l$ auftreten. In diesem Fall ist es nicht erlaubt, dass Wärme vom Stab
+Bei isolierten Enden des Stabes können grundsätzlich beliebige Temperaturen für
+$x = 0$ und $x = l$ auftreten.
+Die einzige Einschränkung liefert die initiale Wärmeverteilung $u(0, x)$.
+Im Fall des isolierten Stabes ist es nicht erlaubt, dass Wärme vom Stab
an die Umgebung oder von der Umgebung an den Stab abgegeben wird.
Aus der Physik ist bekannt, dass Wärme immer von der höheren zur tieferen
@@ -76,17 +83,19 @@ als Randbedingungen.
% Lösung der Differenzialgleichung mittels Separation
%
-\subsubsection{Lösung der Differenzialgleichung}
+\subsection{Separation der Differenzialgleichung
+\label{sturmliouville:subsec:separation}}
-Da die Lösungsfunktion von zwei Variablen abhängig ist, wird als Lösungsansatz
-die Separationsmethode verwendet.
+Da die Lösungsfunktion $u$ von zwei Variablen abhängig ist, wird die
+Gleichung~\eqref{sturmliouville:eq:example-fourier-heat-equation} zunächst
+mittels Separation in zwei gewöhnliche Differentialgleichungen überführt.
Dazu wird
\[
u(t,x)
=
T(t)X(x)
\]
-in die partielle
+in die partielle
Differenzialgleichung~\eqref{sturmliouville:eq:example-fourier-heat-equation}
eingesetzt.
Daraus ergibt sich
@@ -105,7 +114,7 @@ der neuen Variablen $\mu$ gekoppelt werden:
=
\frac{X^{\prime \prime}(x)}{X(x)}
=
- \mu
+ \mu.
\]
Durch die Einführung von $\mu$ kann das Problem nun in zwei separate
Differenzialgleichungen aufgeteilt werden:
@@ -119,21 +128,44 @@ Differenzialgleichungen aufgeteilt werden:
\label{sturmliouville:eq:example-fourier-separated-t}
T^{\prime}(t) - \kappa \mu T(t)
=
- 0
+ 0.
\end{equation}
%
-% Überprüfung Orthogonalität der Lösungen
+% Überprüfung SLP, dann Orthogonalität der Lösungen
%
-Es ist an dieser Stelle zu bemerken, dass die Gleichung in $x$ in
-Sturm-Liouville-Form ist.
-Erfüllen die Randbedingungen des Stab-Problems auch die Randbedingungen des
-Sturm-Liouville-Problems, kann bereits die Aussage getroffen werden, dass alle
-Lösungen für die Gleichung in $x$ orthogonal sein werden.
+An dieser Stelle wird nun gezeigt, dass die Gleichung in $x$ ein
+Sturm-Liouville-Problem ist.
+Dazu werden zunächst die Koeffizientenfunktionen $p(x)$, $q(x)$ und $w(x)$
+benötigt.
+Um diese zu erhalten, wird die
+Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} mit der
+Sturm-Liouville-Form~\eqref{sturmliouville:eq:sturm-liouville-equation}
+verglichen, was zu
+\[
+\begin{aligned}
+ p(x) &= 1 \\
+ q(x) &= 0 \\
+ w(x) &= 1
+\end{aligned}
+\]
+führt.
+
+Diese können bereits auf die Bedingungen in
+Definition~\ref{sturmliouville:def:reguläres_sturm-liouville-problem} geprüft
+werden.
+Es ist schnell ersichtlich, dass die ersten drei Kriterien erfüllt sind.
+Werden nun auch noch die Randbedingungen erfüllt, handelt es sich also um ein
+reguläres Sturm-Liouville-Problem und es kann bereits die Aussage gemacht
+werden, dass alle Lösungen für die Gleichung in $x$ orthogonal sein werden.
+
+Da die Bedingungen des Stab-Problems nur Anforderungen an $x$ stellen, können
+diese direkt für $X(x)$ übernomen werden.
+Es gilt also beispielsweise wegen
+\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant},
+dass $X(0) = X(l) = 0$.
-Da die Bedingungen des Stab-Problem nur Anforderungen an $x$ stellen, können
-diese direkt für $X(x)$ übernomen werden. Es gilt also $X(0) = X(l) = 0$.
Damit die Lösungen von $X$ orthogonal sind, müssen also die Gleichungen
\begin{equation}
\begin{aligned}
@@ -152,18 +184,10 @@ erfüllt sein und es muss ausserdem
\end{equation}
gelten.
-Um zu verifizieren, ob die Randbedingungen erfüllt sind, wird zunächst
-$p(x)$
-benötigt.
-Dazu wird die Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x}
-mit der
-Sturm-Liouville-Form~\eqref{eq:sturm-liouville-equation} verglichen, was zu
-$p(x) = 1$ führt.
-
-Werden nun $p(x)$ und die
+Es werden nun $p(x)$ und die
Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}
-in \eqref{sturmliouville:eq:example-fourier-randbedingungen} eigesetzt, erhält
-man
+des Stab-Problems in \eqref{sturmliouville:eq:example-fourier-randbedingungen}
+eigesetzt und man erhält
\[
\begin{aligned}
k_a y(0) + h_a y'(0) &= h_a y'(0) = 0 \\
@@ -177,17 +201,21 @@ erfüllt sein und da $y(0) = 0$ und $y(l) = 0$ sind, können belibige $k_a \neq
und $k_b \neq 0$ gewählt werden.
Somit ist gezeigt, dass die Randbedingungen des Stab-Problems für Enden auf
-konstanter Temperatur auch die Sturm-Liouville-Randbedingungen erfüllen und
-alle daraus reultierenden Lösungen orthogonal sind.
+konstanter Temperatur auch die Sturm-Liouville-Randbedingungen erfüllen.
+
+Daraus folg zunächst, dass es sich um ein reguläres Sturm-Liouville-Problem
+handelt und weiter, dass alle daraus resultierenden Lösungen orthogonal sind.
Analog dazu kann gezeit werden, dass die Randbedingungen für einen Stab mit
-isolierten Enden ebenfalls die Sturm-Liouville-Randbedingungen erfüllen und
+isolierten
+Enden~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated}
+ebenfalls die Sturm-Liouville-Randbedingungen erfüllen und
somit auch zu orthogonalen Lösungen führen.
%
% Lösung von X(x), Teil mu
%
-\subsubsection{Lösund der Differentialgleichung in $x$}
+\subsection{Lösung der Differentialgleichung in \texorpdfstring{$x$}{x}}
Als erstes wird auf die
Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} eingegangen.
Aufgrund der Struktur der Gleichung
@@ -230,14 +258,14 @@ ergibt dies
=
0
\]
-und durch umformen somit
+und durch Umformen somit
\[
-\alpha^{2}A\cos(\alpha x) - \beta^{2}B\sin(\beta x)
=
\mu A\cos(\alpha x) + \mu B\sin(\beta x).
\]
-Mittels Koeffizientenvergleich von
+Mittels Koeffizientenvergleich auf beiden Seiten von
\[
\begin{aligned}
-\alpha^{2}A\cos(\alpha x)
@@ -258,16 +286,20 @@ Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends
und \eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated}
benötigt.
-Da die Koeffizienten $A$ und $B$, sowie die Parameter $\alpha$ uns $\beta$ im
-allgemeninen ungleich $0$ sind, müssen die Randbedingungen durch die
+Da die Koeffizienten $A$ und $B$, sowie die Parameter $\alpha$ und $\beta$ im
+Allgemeinen ungleich $0$ sind, müssen die Randbedingungen durch die
trigonometrischen Funktionen erfüllt werden.
+\subsubsection{Einsetzen der
+Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}}
+
Es werden nun die
Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}
für einen Stab mit Enden auf konstanter Temperatur in die
Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} eingesetzt.
+
Betrachten wir zunächst die Bedingung für $x = 0$.
-Dies fürht zu
+Dies führt zu
\[
X(0)
=
@@ -288,14 +320,13 @@ sich
B \sin(\beta l)
= 0.
\]
-
$\beta$ muss also so gewählt werden, dass $\sin(\beta l) = 0$ gilt.
Es bleibt noch nach $\beta$ aufzulösen:
\[
\begin{aligned}
\sin(\beta l) &= 0 \\
- \beta l &= n \pi \qquad n \in \mathbb{N} \\
- \beta &= \frac{n \pi}{l} \qquad n \in \mathbb{N}
+ \beta l &= n \pi \qquad n \in \mathbb{N}_0 \\
+ \beta &= \frac{n \pi}{l} \qquad n \in \mathbb{N}_0.
\end{aligned}
\]
@@ -308,11 +339,14 @@ Ausserdem ist zu bemerken, dass dies auch gleich $-\alpha^{2}$ ist.
Da aber $A = 0$ gilt und der Summand mit $\alpha$ verschwindet, ist dies keine
Verletzung der Randbedingungen.
-Durch alanoges Vorgehen kann nun auch das Problem mit isolierten Enden gelöst
+\subsubsection{Einsetzen der
+Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated}}
+
+Durch analoges Vorgehen kann nun auch das Problem mit isolierten Enden gelöst
werden.
-Setzt man nun die
+Setzt man die
Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated}
-in $X^{\prime}$ ein, beginnend für $x = 0$. Es ergibt sich
+in $X^{\prime}$ ein, beginnend mit $x = 0$, ergibt sich
\[
X^{\prime}(0)
=
@@ -331,14 +365,14 @@ folgt nun
= 0.
\]
-Wiedrum muss über die $\sin$-Funktion sicher gestellt werden, dass der
+Wiederum muss über die $\sin$-Funktion sicher gestellt werden, dass der
Ausdruck den Randbedingungen entspricht.
Es folgt nun
\[
\begin{aligned}
\sin(\alpha l) &= 0 \\
- \alpha l &= n \pi \qquad n \in \mathbb{N} \\
- \alpha &= \frac{n \pi}{l} \qquad n \in \mathbb{N}
+ \alpha l &= n \pi \qquad n \in \mathbb{N}_0 \\
+ \alpha &= \frac{n \pi}{l} \qquad n \in \mathbb{N}_0
\end{aligned}
\]
und somit
@@ -347,7 +381,7 @@ und somit
\]
Es ergibt sich also sowohl für einen Stab mit Enden auf konstanter Temperatur
-wie auch mit isolierten Enden
+wie auch für den Stab mit isolierten Enden
\begin{equation}
\label{sturmliouville:eq:example-fourier-mu-solution}
\mu
@@ -355,16 +389,32 @@ wie auch mit isolierten Enden
-\frac{n^{2}\pi^{2}}{l^{2}}.
\end{equation}
-%
-% Lösung von X(x), Teil: Koeffizienten a_n und b_n mittels skalarprodukt.
-%
+\subsection{Fourierreihe als Lösung}
+
+Das Resultat~\eqref{sturmliouville:eq:example-fourier-mu-solution} gibt nun
+wegen der neuen Variablen $n \in \mathbb{N}_0$ vor, dass es potenziell
+unendlich viele Lösungen gibt.
+Dies bedeutet auch, dass es nicht ein $A$ und ein $B$ gibt, sondern einen
+Koeffizienten für jede Lösungsfunktion.
+Wir schreiben deshalb den Lösungsansatz zur Linearkombination
+\[
+ X(x)
+ =
+ \sum_{n = 0}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right)
+ +
+ \sum_{n = 0}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right)
+\]
+aus allen möglichen Lösungen um.
-Bisher wurde über die Koeffizienten $A$ und $B$ noch nicht viel ausgesagt.
-Zunächst ist wegen vorhergehender Rechnung ersichtlich, dass es sich bei
-$A$ und $B$ nicht um einzelne Koeffizienten handelt.
-Stattdessen können die Koeffizienten für jedes $n \in \mathbb{N}$
-unterschiedlich sein.
-Die Lösung $X(x)$ wird nun umgeschrieben zu
+Als nächstes werden noch die Summanden für $n = 0$ aus den Summen herausgezogen.
+Da
+\[
+ \begin{aligned}
+ a_0 \cos\left(\frac{0 \pi}{l}\right) &= a_0 \\
+ b_0 \sin\left(\frac{0 \pi}{l}\right) &= 0
+ \end{aligned}
+\]
+gilt, endet man somit bei
\[
X(x)
=
@@ -374,10 +424,45 @@ Die Lösung $X(x)$ wird nun umgeschrieben zu
+
\sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right).
\]
+Dies ist die allgemeine Fourierreihe, welche unsere Stab-Probleme löst.
+Wie zuvor bereits erwähnt, wissen wir, dass sämtliche Lösungsfunktionen
+orthogonal zueinander sind bezüglich des
+Skalarproduktes~\eqref{sturmliouville:eq:modified-dot-product}.
+Dieses vereinfacht sich noch etwas, da aus
+Abschnitt~\ref{sturmliouville:subsec:separation} bereits $w(x) = 1$ gegeben ist.
+Somit ist das Skalarprodukt
+\begin{equation}
+ \label{sturmliouville:eq:example-fourier-dot-product}
+ \langle f, g \rangle_w
+ =
+ \int_a^b f(x)g(x)w(x)\,dx
+ =
+ \int_a^b f(x)g(x)\,dx.
+\end{equation}
+
+Es gilt also
+\[
+\begin{aligned}
+ \int_{-l}^{l}\cos\left(\frac{n \pi}{l}x\right)
+ \cos\left(\frac{m \pi}{l}x\right)dx
+ &= 0 \qquad n \neq m \\
+ \int_{-l}^{l}\sin\left(\frac{n \pi}{l}x\right)
+ \sin\left(\frac{m \pi}{l}x\right)dx
+ &= 0 \qquad n \neq m \\
+ \int_{-l}^{l}\cos\left(\frac{n \pi}{l}x\right)
+ \sin\left(\frac{m \pi}{l}x\right)dx
+ &= 0.
+\end{aligned}
+\]
+
+\subsubsection{Berechnung der Fourierkoeffizienten}
+
+%
+% Lösung von X(x), Teil: Koeffizienten a_n und b_n mittels skalarprodukt.
+%
-Um eine eindeutige Lösung für $X(x)$ zu erhalten werden noch weitere
-Bedingungen benötigt.
-Diese sind die Startbedingungen oder $u(0, x) = X(x)$ für $t = 0$.
+Um eine eindeutige Lösung für $X(x)$ zu erhalten wird nun die initiale
+Wärmeverteilung oder $u(0, x) = X(x)$ für $t = 0$ benötigt.
Es gilt also nun die Gleichung
\begin{equation}
\label{sturmliouville:eq:example-fourier-initial-conditions}
@@ -392,7 +477,8 @@ Es gilt also nun die Gleichung
nach allen $a_n$ und $b_n$ aufzulösen.
Da aber $a_n$ und $b_n$ jeweils als Faktor zu einer trigonometrischen Funktion
gehört, von der wir wissen, dass sie orthogonal zu allen anderen
-trigonometrischen Funktionen der Lösung ist, kann direkt das Skalarprodukt
+trigonometrischen Funktionen der Lösung ist, kann direkt das
+Skalarprodukt~\eqref{sturmliouville:eq:example-fourier-dot-product}
verwendet werden um die Koeffizienten $a_n$ und $b_n$ zu bestimmen.
Es wird also die Tatsache ausgenutzt, dass die Gleichheit in
\eqref{sturmliouville:eq:example-fourier-initial-conditions} nach Anwendung des
@@ -404,26 +490,26 @@ Skalarprodukt mit der Basisfunktion $ \cos\left(\frac{m \pi}{l}x\right)$
gebildet:
\begin{equation}
\label{sturmliouville:eq:dot-product-cosine}
- \langle u(0, x), \cos\left(\frac{m \pi}{l}x\right) \rangle
+ \biggl\langle u(0, x), \cos\left(\frac{m \pi}{l}x\right) \biggr\rangle _w
=
- \langle a_0
+ \biggl\langle a_0
+
\sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right)
+
\sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right),
- \cos\left(\frac{m \pi}{l}x\right)\rangle
+ \cos\left(\frac{m \pi}{l}x\right)\biggr\rangle _w
\end{equation}
Bevor diese Form in die Integralform umgeschrieben werden kann, muss überlegt
sein, welche Integralgrenzen zu verwenden sind.
In diesem Fall haben die $\sin$ und $\cos$ Terme beispielsweise keine ganze
-Periode im Intervall $x \in [0, l]$ für ungerade $n$ und $m$.
+Periode im Intervall $x \in [0, l]$ für ungerade $n$ und ungerade $m$.
Um die Skalarprodukte aber korrekt zu berechnen, muss über ein ganzzahliges
Vielfaches der Periode der trigonometrischen Funktionen integriert werden.
Dazu werden die Integralgrenzen $-l$ und $l$ verwendet und es werden ausserdem
neue Funktionen $\hat{u}_c(0, x)$ für die Berechnung mit Cosinus und
$\hat{u}_s(0, x)$ für die Berechnung mit Sinus angenomen, welche $u(0, t)$
-gerade, respektive ungerade auf $[-l, l]$ fortsetzen:
+gerade, respektive ungerade auf $[-l, 0]$ fortsetzen:
\[
\begin{aligned}
\hat{u}_c(0, x)
@@ -444,22 +530,23 @@ gerade, respektive ungerade auf $[-l, l]$ fortsetzen:
\end{aligned}
\]
-Die Konsequenz davon ist, dass nun das Resultat der Integrale um den Faktor zwei
-skalliert wurde, also gilt nun
+Diese Funktionen wurden gerade so gewählt, dass nun das Resultat der Integrale
+um den Faktor $2$ skalliert wurde.
+Es gilt also
\[
-\begin{aligned}
\int_{-l}^{l}\hat{u}_c(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
- &=
+ =
2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
- \\
+\]
+und
+\[
\int_{-l}^{l}\hat{u}_s(0, x)\sin\left(\frac{m \pi}{l}x\right)dx
- &=
+ =
2\int_{0}^{l}u(0, x)\sin\left(\frac{m \pi}{l}x\right)dx.
-\end{aligned}
\]
-Zunächst wird nun das Skalaprodukt~\eqref{sturmliouville:eq:dot-product-cosine}
-berechnet:
+Als nächstes wird nun das
+Skalaprodukt~\eqref{sturmliouville:eq:dot-product-cosine} berechnet:
\[
\begin{aligned}
\int_{-l}^{l}\hat{u}_c(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
@@ -508,15 +595,18 @@ orthogonal zueinander stehen und
\]
da Sinus- und Cosinus-Funktionen ebenfalls orthogonal zueinander sind.
-Es bleibt also lediglich der Summand für $a_m$ stehen, was die Gleichung zu
+Es bleibt also lediglich der Summand mit $a_m$ stehen, was die Gleichung zu
\[
2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
=
a_m\int_{-l}^{l}\cos^2\left(\frac{m\pi}{l}x\right)dx
\]
-vereinfacht. Im nächsten Schritt wird nun das Integral auf der rechten Seite
-berechnet und dann nach $a_m$ aufgelöst. Am einnfachsten geht dies, wenn zuerst
-mit $u = \frac{m \pi}{l}x$ substituiert wird:
+vereinfacht.
+
+Im nächsten Schritt wird nun das Integral auf der rechten Seite
+berechnet und dann nach $a_m$ aufgelöst.
+Am einfachsten geht dies, wenn zuerst mit $u = \frac{m \pi}{l}x$ substituiert
+wird:
\[
\begin{aligned}
2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
@@ -538,7 +628,7 @@ mit $u = \frac{m \pi}{l}x$ substituiert wird:
\\
a_m
&=
- \frac{2}{l} \int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
+ \frac{2}{l} \int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx.
\end{aligned}
\]
@@ -552,7 +642,7 @@ $ \sin\left(\frac{m \pi}{l}x\right) $ gezeigt werden, dass
gilt.
Etwas anders ist es allerdings bei $a_0$.
-Wie der Name bereits suggeriert, handelt es sich hierbei um den Koeffizienten
+Wie zuvor bereits erwähnt, handelt es sich hierbei um den Koeffizienten
zur Basisfunktion $\cos\left(\frac{0 \pi}{l}x\right)$ beziehungsweise der
konstanten Funktion $1$.
Um einen Ausdruck für $a_0$ zu erhalten, wird wiederum auf beiden Seiten
@@ -580,14 +670,14 @@ Skalarprodukt mit der konstanten Basisfunktion $1$ gebildet:
\]
Hier fallen nun alle Terme, die $\sin$ oder $\cos$ beinhalten weg, da jeweils
-über ein Vielfaches der Periode integriert wird.
+über ein ganzzahliges Vielfaches der Periode integriert wird.
Es bleibt also noch
\[
2\int_{0}^{l}u(0, x)dx
=
- a_0 \int_{-l}^{l}dx
+ a_0 \int_{-l}^{l}dx,
\]
-, was sich wie folgt nach $a_0$ auflösen lässt:
+was sich wie folgt nach $a_0$ auflösen lässt:
\[
\begin{aligned}
2\int_{0}^{l}u(0, x)dx
@@ -605,7 +695,7 @@ Es bleibt also noch
\\
a_0
&=
- \frac{1}{l} \int_{0}^{l}u(0, x)dx
+ \frac{1}{l} \int_{0}^{l}u(0, x)dx.
\end{aligned}
\]
@@ -613,16 +703,22 @@ Es bleibt also noch
% Lösung von T(t)
%
-\subsubsection{Lösung der Differentialgleichung in $t$}
+\subsection{Lösung der Differentialgleichung in \texorpdfstring{$t$}{t}}
Zuletzt wird die zweite Gleichung der
Separation~\eqref{sturmliouville:eq:example-fourier-separated-t} betrachtet.
-Diese wird über das charakteristische Polynom
+Dazu nimmt man das charakteristische Polynom
\[
\lambda - \kappa \mu
=
0
\]
-gelöst.
+der Gleichung
+\[
+ T^{\prime}(t) - \kappa \mu T(t)
+ =
+ 0
+\]
+und löst dieses.
Es ist direkt ersichtlich, dass $\lambda = \kappa \mu$ gelten muss, was zur
Lösung
@@ -639,7 +735,9 @@ führt und mit dem Resultat~\eqref{sturmliouville:eq:example-fourier-mu-solution
\]
ergibt.
-Dieses Resultat kann nun mit allen vorhergehenden Resultaten zusammengesetzt
+\subsection{Lösung des Wärmeleitungsproblems}
+
+Nun können alle vorhergehenden Resultate zusammengesetzt
werden um die vollständige Lösung für das Stab-Problem zu erhalten.
\subsubsection{Lösung für einen Stab mit Enden auf konstanter Temperatur}