aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/sturmliouville/waermeleitung_beispiel.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/sturmliouville/waermeleitung_beispiel.tex')
-rw-r--r--buch/papers/sturmliouville/waermeleitung_beispiel.tex16
1 files changed, 8 insertions, 8 deletions
diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex
index 7a37b2b..a72c562 100644
--- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex
+++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex
@@ -20,7 +20,7 @@ die partielle Differentialgleichung
\frac{\partial u}{\partial t} =
\kappa \frac{\partial^{2}u}{{\partial x}^{2}},
\end{equation}
-wobei der Stab in diesem Fall auf der X-Achse im Intervall $[0,l]$ liegt.
+wobei der Stab in diesem Fall auf der $X$-Achse im Intervall $[0,l]$ liegt.
Da diese Differentialgleichung das Problem allgemein für einen homogenen
Stab beschreibt, werden zusätzliche Bedingungen benötigt, um beispielsweise
@@ -35,7 +35,7 @@ Tempreatur gehalten werden.
Die Enden des Stabes auf konstanter Temperatur zu halten bedeutet, dass die
Lösungsfunktion $u(t,x)$ bei $x = 0$ und $x = l$ nur die vorgegebene
Temperatur zurückgeben darf. Diese wird einfachheitshalber als $0$ angenomen.
-Es folgen nun
+Es folgt nun
\begin{equation}
\label{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}
u(t,0)
@@ -52,7 +52,7 @@ als Randbedingungen.
\subsubsection{Randbedingungen für Stab mit isolierten Enden}
-Bei isolierten Enden des Stabes können belibige Temperaturen für $x = 0$ und
+Bei isolierten Enden des Stabes können beliebige Temperaturen für $x = 0$ und
$x = l$ auftreten. In diesem Fall ist es nicht erlaubt, dass Wärme vom Stab
an die Umgebung oder von der Umgebung an den Stab abgegeben wird.
@@ -187,7 +187,7 @@ somit auch zu orthogonalen Lösungen führen.
% Lösung von X(x), Teil mu
%
-\subsubsection{Lösund der Differentialgleichung in x}
+\subsubsection{Lösund der Differentialgleichung in $x$}
Als erstes wird auf die
Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} eingegangen.
Aufgrund der Struktur der Gleichung
@@ -473,7 +473,7 @@ berechnet:
\\
2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
=&
- a_0 \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx
+ a_0 \int_{-l}^{l}\cos\left(\frac{m \pi}{l}x\right) dx
+
\sum_{n = 1}^{\infty}\left[a_n\int_{-l}^{l}\cos\left(\frac{n\pi}{l}x\right)
\cos\left(\frac{m \pi}{l}x\right)dx\right]
@@ -487,7 +487,7 @@ berechnet:
Betrachtet man nun die Summanden auf der rechten Seite stellt man fest, dass
nahezu alle Terme verschwinden, denn
\[
- \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx
+ \int_{-l}^{l}\cos\left(\frac{m \pi}{l}x\right) dx
=
0,
\]
@@ -528,10 +528,10 @@ mit $u = \frac{m \pi}{l}x$ substituiert wird:
\frac{\sin\left(2u\right)}{4}\right]_{u=-m\pi}^{m\pi}
\\
&=
- a_m\frac{l}{m\pi}\left(\frac{m\pi}{2} +
+ a_m\frac{l}{m\pi}\biggl(\frac{m\pi}{2} +
\underbrace{\frac{\sin\left(2m\pi\right)}{4}}_{\displaystyle = 0} -
\frac{-m\pi}{2} -
- \underbrace{\frac{\sin\left(-2m\pi\right)}{4}}_{\displaystyle = 0}\right)
+ \underbrace{\frac{\sin\left(-2m\pi\right)}{4}}_{\displaystyle = 0}\biggr)
\\
&=
a_m l