aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/sturmliouville/waermeleitung_beispiel.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/sturmliouville/waermeleitung_beispiel.tex')
-rw-r--r--buch/papers/sturmliouville/waermeleitung_beispiel.tex135
1 files changed, 78 insertions, 57 deletions
diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex
index 0ef1072..93a1eb0 100644
--- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex
+++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex
@@ -5,12 +5,11 @@
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\subsection{Wärmeleitung in homogenem Stab}
-\rhead{Wärmeleitung in homogenem Stab}
+\section{Beispiel: Wärmeleitung in homogenem Stab}
In diesem Abschnitt wird das Problem der Wärmeleitung in einem homogenen Stab
betrachtet, angeschaut wie das Sturm-Liouville-Problem bei der Beschreibung
-dieses physikalischen Phänomenes auftritt und hergeleitet wie die Fourierreihe
+dieses physikalischen Phänomens auftritt und hergeleitet wie die Fourierreihe
als Lösung des Problems zustande kommt.
Zunächst wird ein eindimensionaler homogener Stab der Länge $l$ und
@@ -35,6 +34,7 @@ werden.
%
% Randbedingungen für Stab mit konstanten Endtemperaturen
%
+\subsection{Randbedingungen}
\subsubsection{Randbedingungen für Stab mit Enden auf konstanter Temperatur}
Die Enden des Stabes auf konstanter Temperatur zu halten bedeutet, dass die
@@ -83,7 +83,8 @@ als Randbedingungen.
% Lösung der Differenzialgleichung mittels Separation
%
-\subsubsection{Lösung der Differenzialgleichung}
+\subsection{Separation der Differenzialgleichung
+\label{sturmliouville:subsec:separation}}
Da die Lösungsfunktion $u$ von zwei Variablen abhängig ist, wird die
Gleichung~\eqref{sturmliouville:eq:example-fourier-heat-equation} zunächst
@@ -113,7 +114,7 @@ der neuen Variablen $\mu$ gekoppelt werden:
=
\frac{X^{\prime \prime}(x)}{X(x)}
=
- \mu
+ \mu.
\]
Durch die Einführung von $\mu$ kann das Problem nun in zwei separate
Differenzialgleichungen aufgeteilt werden:
@@ -127,18 +128,37 @@ Differenzialgleichungen aufgeteilt werden:
\label{sturmliouville:eq:example-fourier-separated-t}
T^{\prime}(t) - \kappa \mu T(t)
=
- 0
+ 0.
\end{equation}
%
-% Überprüfung Orthogonalität der Lösungen
+% Überprüfung SLP, dann Orthogonalität der Lösungen
%
-Es ist an dieser Stelle zu bemerken, dass die Gleichung in $x$ in
-Sturm-Liouville-Form ist.
-Erfüllen die Randbedingungen des Stab-Problems auch die Randbedingungen des
-Sturm-Liouville-Problems, kann bereits die Aussage getroffen werden, dass alle
-Lösungen für die Gleichung in $x$ orthogonal sein werden.
+An dieser Stelle wird nun gezeigt, dass die Gleichung in $x$ ein
+Sturm-Liouville-Problem ist.
+Dazu werden zunächst die Koeffizientenfunktionen $p(x)$, $q(x)$ und $w(x)$
+benötigt.
+Um diese zu erhalten, wird die
+Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} mit der
+Sturm-Liouville-Form~\eqref{sturmliouville:eq:sturm-liouville-equation}
+verglichen, was zu
+\[
+\begin{aligned}
+ p(x) &= 1 \\
+ q(x) &= 0 \\
+ w(x) &= 1
+\end{aligned}
+\]
+führt.
+
+Diese können bereits auf die Bedingungen in
+Definition~\ref{sturmliouville:def:reguläres_sturm-liouville-problem} geprüft
+werden.
+Es ist schnell ersichtlich, dass die ersten drei Kriterien erfüllt sind.
+Werden nun auch noch die Randbedingungen erfüllt, handelt es sich also um ein
+reguläres Sturm-Liouville-Problem und es kann bereits die Aussage gemacht
+werden, dass alle Lösungen für die Gleichung in $x$ orthogonal sein werden.
Da die Bedingungen des Stab-Problems nur Anforderungen an $x$ stellen, können
diese direkt für $X(x)$ übernomen werden.
@@ -146,7 +166,7 @@ Es gilt also beispielsweise wegen
\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant},
dass $X(0) = X(l) = 0$.
-Damit die Lösungen von $X$ orthogonal sind, müssen nun also die Gleichungen
+Damit die Lösungen von $X$ orthogonal sind, müssen also die Gleichungen
\begin{equation}
\begin{aligned}
\label{sturmliouville:eq:example-fourier-randbedingungen}
@@ -164,28 +184,6 @@ erfüllt sein und es muss ausserdem
\end{equation}
gelten.
-Um zu verifizieren, dass die Randbedingungen erfüllt sind, werden also die
-Koeffizientenfunktionen $p(x)$, $q(x)$ und $w(x)$ benötigt.
-Dazu wird die Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x}
-mit der
-Sturm-Liouville-Form~\eqref{sturmliouville:eq:sturm-liouville-equation}
-verglichen, was zu
-\[
-\begin{aligned}
- p(x) &= 1 \\
- q(x) &= 0 \\
- w(x) &= 1
-\end{aligned}
-\]
-führt.
-
-Diese können bereits auf die Bedingungen in
-Definition~\ref{sturmliouville:def:reguläres_sturm-liouville-problem} geprüft
-werden.
-Es ist schnell ersichtlich, dass die ersten drei Kriterien erfüllt sind.
-Werden nun auch noch die Randbedingungen erfüllt, handelt es sich also um ein
-reguläres Sturm-Liouville-Problem.
-
Es werden nun $p(x)$ und die
Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}
des Stab-Problems in \eqref{sturmliouville:eq:example-fourier-randbedingungen}
@@ -204,6 +202,7 @@ und $k_b \neq 0$ gewählt werden.
Somit ist gezeigt, dass die Randbedingungen des Stab-Problems für Enden auf
konstanter Temperatur auch die Sturm-Liouville-Randbedingungen erfüllen.
+
Daraus folg zunächst, dass es sich um ein reguläres Sturm-Liouville-Problem
handelt und weiter, dass alle daraus resultierenden Lösungen orthogonal sind.
Analog dazu kann gezeit werden, dass die Randbedingungen für einen Stab mit
@@ -216,7 +215,7 @@ somit auch zu orthogonalen Lösungen führen.
% Lösung von X(x), Teil mu
%
-\subsubsection{Lösung der Differentialgleichung in $x$}
+\subsection{Lösung der Differentialgleichung in \texorpdfstring{$x$}{x}}
Als erstes wird auf die
Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} eingegangen.
Aufgrund der Struktur der Gleichung
@@ -259,14 +258,14 @@ ergibt dies
=
0
\]
-und durch umformen somit
+und durch Umformen somit
\[
-\alpha^{2}A\cos(\alpha x) - \beta^{2}B\sin(\beta x)
=
\mu A\cos(\alpha x) + \mu B\sin(\beta x).
\]
-Mittels Koeffizientenvergleich von
+Mittels Koeffizientenvergleich auf beiden Seiten von
\[
\begin{aligned}
-\alpha^{2}A\cos(\alpha x)
@@ -288,16 +287,19 @@ und \eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated}
benötigt.
Da die Koeffizienten $A$ und $B$, sowie die Parameter $\alpha$ und $\beta$ im
-allgemeinen ungleich $0$ sind, müssen die Randbedingungen durch die
+Allgemeinen ungleich $0$ sind, müssen die Randbedingungen durch die
trigonometrischen Funktionen erfüllt werden.
+\subsubsection{Einsetzen der
+Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}}
+
Es werden nun die
Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}
für einen Stab mit Enden auf konstanter Temperatur in die
Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} eingesetzt.
Betrachten wir zunächst die Bedingung für $x = 0$.
-Dies fürht zu
+Dies führt zu
\[
X(0)
=
@@ -324,7 +326,7 @@ Es bleibt noch nach $\beta$ aufzulösen:
\begin{aligned}
\sin(\beta l) &= 0 \\
\beta l &= n \pi \qquad n \in \mathbb{N}_0 \\
- \beta &= \frac{n \pi}{l} \qquad n \in \mathbb{N}_0
+ \beta &= \frac{n \pi}{l} \qquad n \in \mathbb{N}_0.
\end{aligned}
\]
@@ -337,6 +339,9 @@ Ausserdem ist zu bemerken, dass dies auch gleich $-\alpha^{2}$ ist.
Da aber $A = 0$ gilt und der Summand mit $\alpha$ verschwindet, ist dies keine
Verletzung der Randbedingungen.
+\subsubsection{Einsetzen der
+Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated}}
+
Durch analoges Vorgehen kann nun auch das Problem mit isolierten Enden gelöst
werden.
Setzt man die
@@ -384,7 +389,7 @@ wie auch für den Stab mit isolierten Enden
-\frac{n^{2}\pi^{2}}{l^{2}}.
\end{equation}
-\subsubsection{Fourierreihe als Lösung}
+\subsection{Fourierreihe als Lösung}
Das Resultat~\eqref{sturmliouville:eq:example-fourier-mu-solution} gibt nun
wegen der neuen Variablen $n \in \mathbb{N}_0$ vor, dass es potenziell
@@ -420,9 +425,21 @@ gilt, endet man somit bei
\sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right).
\]
Dies ist die allgemeine Fourierreihe, welche unsere Stab-Probleme löst.
-Wie zuvor bereits erwähnt, wissen wir dass sämtliche Lösungsfunktionen
-orthogonal zueinander sind, da es sich hier um die Lösung eines
-Sturm-Liouville-Problems handelt.
+Wie zuvor bereits erwähnt, wissen wir, dass sämtliche Lösungsfunktionen
+orthogonal zueinander sind bezüglich des
+Skalarproduktes~\eqref{sturmliouville:eq:modified-dot-product}.
+Dieses vereinfacht sich noch etwas, da aus
+Abschnitt~\ref{sturmliouville:subsec:separation} bereits $w(x) = 1$ gegeben ist.
+Somit ist das Skalarprodukt
+\begin{equation}
+ \label{sturmliouville:eq:example-fourier-dot-product}
+ \langle f, g \rangle_w
+ =
+ \int_a^b f(x)g(x)w(x)\,dx
+ =
+ \int_a^b f(x)g(x)\,dx.
+\end{equation}
+
Es gilt also
\[
\begin{aligned}
@@ -460,7 +477,8 @@ Es gilt also nun die Gleichung
nach allen $a_n$ und $b_n$ aufzulösen.
Da aber $a_n$ und $b_n$ jeweils als Faktor zu einer trigonometrischen Funktion
gehört, von der wir wissen, dass sie orthogonal zu allen anderen
-trigonometrischen Funktionen der Lösung ist, kann direkt das Skalarprodukt
+trigonometrischen Funktionen der Lösung ist, kann direkt das
+Skalarprodukt~\eqref{sturmliouville:eq:example-fourier-dot-product}
verwendet werden um die Koeffizienten $a_n$ und $b_n$ zu bestimmen.
Es wird also die Tatsache ausgenutzt, dass die Gleichheit in
\eqref{sturmliouville:eq:example-fourier-initial-conditions} nach Anwendung des
@@ -472,14 +490,14 @@ Skalarprodukt mit der Basisfunktion $ \cos\left(\frac{m \pi}{l}x\right)$
gebildet:
\begin{equation}
\label{sturmliouville:eq:dot-product-cosine}
- \langle u(0, x), \cos\left(\frac{m \pi}{l}x\right) \rangle
+ \biggl\langle u(0, x), \cos\left(\frac{m \pi}{l}x\right) \biggr\rangle _w
=
- \langle a_0
+ \biggl\langle a_0
+
\sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right)
+
\sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right),
- \cos\left(\frac{m \pi}{l}x\right)\rangle
+ \cos\left(\frac{m \pi}{l}x\right)\biggr\rangle _w
\end{equation}
Bevor diese Form in die Integralform umgeschrieben werden kann, muss überlegt
@@ -513,7 +531,7 @@ gerade, respektive ungerade auf $[-l, 0]$ fortsetzen:
\]
Diese Funktionen wurden gerade so gewählt, dass nun das Resultat der Integrale
-um den Faktor zwei skalliert wurde.
+um den Faktor $2$ skalliert wurde.
Es gilt also
\[
\int_{-l}^{l}\hat{u}_c(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
@@ -586,8 +604,9 @@ Es bleibt also lediglich der Summand mit $a_m$ stehen, was die Gleichung zu
vereinfacht.
Im nächsten Schritt wird nun das Integral auf der rechten Seite
-berechnet und dann nach $a_m$ aufgelöst. Am einnfachsten geht dies, wenn zuerst
-mit $u = \frac{m \pi}{l}x$ substituiert wird:
+berechnet und dann nach $a_m$ aufgelöst.
+Am einfachsten geht dies, wenn zuerst mit $u = \frac{m \pi}{l}x$ substituiert
+wird:
\[
\begin{aligned}
2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
@@ -609,7 +628,7 @@ mit $u = \frac{m \pi}{l}x$ substituiert wird:
\\
a_m
&=
- \frac{2}{l} \int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
+ \frac{2}{l} \int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx.
\end{aligned}
\]
@@ -676,7 +695,7 @@ was sich wie folgt nach $a_0$ auflösen lässt:
\\
a_0
&=
- \frac{1}{l} \int_{0}^{l}u(0, x)dx
+ \frac{1}{l} \int_{0}^{l}u(0, x)dx.
\end{aligned}
\]
@@ -684,10 +703,10 @@ was sich wie folgt nach $a_0$ auflösen lässt:
% Lösung von T(t)
%
-\subsubsection{Lösung der Differentialgleichung in $t$}
+\subsection{Lösung der Differentialgleichung in \texorpdfstring{$t$}{t}}
Zuletzt wird die zweite Gleichung der
Separation~\eqref{sturmliouville:eq:example-fourier-separated-t} betrachtet.
-Dazu betrachtet man das charakteristische Polynom
+Dazu nimmt man das charakteristische Polynom
\[
\lambda - \kappa \mu
=
@@ -716,7 +735,9 @@ führt und mit dem Resultat~\eqref{sturmliouville:eq:example-fourier-mu-solution
\]
ergibt.
-Dieses Resultat kann nun mit allen vorhergehenden Resultaten zusammengesetzt
+\subsection{Lösung des Wärmeleitungsproblems}
+
+Nun können alle vorhergehenden Resultate zusammengesetzt
werden um die vollständige Lösung für das Stab-Problem zu erhalten.
\subsubsection{Lösung für einen Stab mit Enden auf konstanter Temperatur}