aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/zeta/analytic_continuation.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/zeta/analytic_continuation.tex')
-rw-r--r--buch/papers/zeta/analytic_continuation.tex26
1 files changed, 13 insertions, 13 deletions
diff --git a/buch/papers/zeta/analytic_continuation.tex b/buch/papers/zeta/analytic_continuation.tex
index 4046bb7..ed07e04 100644
--- a/buch/papers/zeta/analytic_continuation.tex
+++ b/buch/papers/zeta/analytic_continuation.tex
@@ -62,14 +62,14 @@ Durch Subtraktion der beiden Gleichungen \eqref{zeta:align1} minus \eqref{zeta:a
{\color{blue}\frac{2}{2^s}}
+
{\color{red}\frac{1}{2^s}}
- }_{-\frac{1}{2^s}}
+ }_{\displaystyle{-\frac{1}{2^s}}}
+
{\color{red}\frac{1}{3^s}}
\underbrace{-
{\color{blue}\frac{2}{4^s}}
+
{\color{red}\frac{1}{4^s}}
- }_{-\frac{1}{4^s}}
+ }_{\displaystyle{-\frac{1}{4^s}}}
\ldots
\\
&= \eta(s).
@@ -89,7 +89,7 @@ Wir beginnen damit, die Gammafunktion für den halben Funktionswert zu berechnen
=
\int_0^{\infty} t^{\frac{s}{2}-1} e^{-t} dt.
\end{equation}
-Nun substituieren wir $t$ mit $t = \pi n^2 x$ und $dt=\pi n^2 dx$ und erhalten
+Nun substituieren wir $t = \pi n^2 x$ und $dt=\pi n^2 dx$ und erhalten
\begin{equation}
\Gamma \left( \frac{s}{2} \right)
=
@@ -109,7 +109,7 @@ Analog zum Abschnitt \ref{zeta:section:zusammenhang_mit_gammafunktion} teilen wi
e^{-\pi n^2 x}
\,dx,
\end{equation}
-und finden $\zeta(s)$ durch die Summenbildung $\sum_{n=1}^{\infty}$
+und finden $\zeta(s)$ durch die Summenbildung über alle $n$
\begin{align}
\frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}}}
\zeta(s)
@@ -139,14 +139,14 @@ Zunächst teilen wir nun das Integral auf in zwei Teile
x^{\frac{s}{2}-1}
\psi(x)
\,dx
- }_{I_1}
+ }_{\displaystyle{I_1}}
+
\underbrace{
\int_1^{\infty}
x^{\frac{s}{2}-1}
\psi(x)
\,dx
- }_{I_2}
+ }_{\displaystyle{I_2}}
=
I_1 + I_2.
\end{equation}
@@ -231,11 +231,11 @@ Somit haben wir die analytische Fortsetzung gefunden als
\zeta(1-s),
\end{equation}
was einer Spiegelung an der $\Re(s) = \frac{1}{2}$ Geraden entspricht.
-Eine ganz ähnliche Spiegelungseigenschaft wurde bereits in Kapitel \ref{buch:funktionentheorie:subsection:gammareflektion} für die Gammafunktion gefunden.
+Eine ganz ähnliche Spiegelungseigenschaft wurde bereits in Abschnitt \ref{buch:funktionentheorie:subsection:gammareflektion} für die Gammafunktion gefunden.
\subsection{Berechnung des Integrals $I_1 = \int_0^{1} x^{\frac{s}{2}-1} \psi(x) \,dx$} \label{zeta:subsubsec:intcal}
-Ziel dieses Abschnittes ist es, zu zeigen wie das Integral $I_1$ aus Gleichung \eqref{zeta:equation:integral2} durch ein neues Integral mit den Integrationsgrenzen $1$ und $\infty$ ersetzt werden kann.
+Ziel dieses Abschnittes ist, zu zeigen wie das Integral $I_1$ aus Gleichung \eqref{zeta:equation:integral2} durch ein neues Integral mit den Integrationsgrenzen $1$ und $\infty$ ersetzt werden kann.
Da dieser Schritt ziemlich aufwendig ist, wird er hier in einem eigenen Abschnitt behandelt.
Zunächst wird die poissonsche Summenformel hergeleitet \cite{zeta:online:poisson}, da diese verwendet werden kann um $\psi(x)$ zu berechnen.
@@ -313,8 +313,8 @@ Um die poissonsche Summenformel zu beweisen, berechnen wir zunächst die Fourier
\underbrace{
\sum_{k=-\infty}^{\infty}
e^{-i 2\pi x k}
- }_{\text{\eqref{zeta:equation:fourier_dirac}}}
- \, dx,
+ }_{\displaystyle{\text{\eqref{zeta:equation:fourier_dirac}}}}
+ \, dx, \label{zeta:equation:1934}
\end{align}
und verwenden die Fouriertransformation der Dirac Funktion aus \eqref{zeta:equation:fourier_dirac}
\begin{align}
@@ -330,7 +330,7 @@ Um die poissonsche Summenformel zu beweisen, berechnen wir zunächst die Fourier
\sum_{k=-\infty}^{\infty}
\delta(x + k).
\end{align}
- Wenn wir dies einsetzen und erhalten wir
+ Wenn wir dies einsetzen in \eqref{zeta:equation:1934} erhalten wir
\begin{equation}
\sum_{k=-\infty}^{\infty}
F(k)
@@ -465,7 +465,7 @@ Diese Form von $\psi(x)$ eingesetzt in $I_1$ ergibt
x^{\frac{s}{2}-\frac{3}{2}}
\psi \left( \frac{1}{x} \right)
\,dx
- }_{I_3}
+ }_{\displaystyle{I_3}}
+
\underbrace{
\frac{1}{2}
@@ -474,7 +474,7 @@ Diese Form von $\psi(x)$ eingesetzt in $I_1$ ergibt
-
x^{\frac{s}{2}-1}
\,dx
- }_{I_4}. \label{zeta:equation:integral3}
+ }_{\displaystyle{I_4}}. \label{zeta:equation:integral3}
\end{align}
Darin kann für das zweite Integral $I_4$ eine Lösung gefunden werden als
\begin{equation}