diff options
Diffstat (limited to 'buch/papers')
-rw-r--r-- | buch/papers/kra/anwendung.tex | 45 | ||||
-rw-r--r-- | buch/papers/kra/einleitung.tex | 16 | ||||
-rw-r--r-- | buch/papers/kra/loesung.tex | 53 | ||||
-rw-r--r-- | buch/papers/kra/references.bib | 15 |
4 files changed, 80 insertions, 49 deletions
diff --git a/buch/papers/kra/anwendung.tex b/buch/papers/kra/anwendung.tex index 4d4d351..0deaf3c 100644 --- a/buch/papers/kra/anwendung.tex +++ b/buch/papers/kra/anwendung.tex @@ -1,45 +1,40 @@ -\section{Anwendungen \label{kra:section:anwendung}} -\rhead{Anwendungen} +\section{Anwendung \label{kra:section:anwendung}} +\rhead{Anwendung} \newcommand{\dt}[0]{\frac{d}{dt}} Die Matrix-Riccati Differentialgleichung findet unter anderem Anwendung in der Regelungstechnik beim RQ- und RQG-Regler oder aber auch beim Kalmanfilter. -Im folgenden Abschnitt möchten wir uns an einem Beispiel anschauen wie wir mit Hilfe der Matrix-Riccati Differentialgleichung (\ref{kra:matrixriccati}) ein Feder-Masse-System untersuchen können. +Im folgenden Abschnitt möchten wir uns an einem Beispiel anschauen wie wir mit Hilfe der Matrix-Riccati Differentialgleichung (\ref{kra:equation:matrixriccati}) ein Feder-Masse-System untersuchen können \cite{kra:riccati}. \subsection{Feder-Masse-System} -Die Einfachste Form eines Feder-Masse-Systems ist dargestellt in Abbildung \ref{kra:fig:simple_mass_spring}. -Es besteht aus einer Masse $m$ welche reibungsfrei gelagert ist und einer Feder mit der Federkonstante $k$. +Die einfachste Form eines Feder-Masse-Systems ist dargestellt in Abbildung \ref{kra:fig:simple_mass_spring}. +Es besteht aus einer reibungsfrei gelagerten Masse $m$ ,welche an eine Feder mit der Federkonstante $k$ gekoppelt ist. Die im System wirkenden Kräfte teilen sich auf in die auf dem hookeschen Gesetz basierenden Rückstellkraft $F_R = k \Delta_x$ und der auf dem Aktionsprinzip basierenden Kraft $F_a = am = \ddot{x} m$. Das Kräftegleichgewicht fordert $F_R = F_a$ woraus folgt, dass \begin{equation*} k \Delta_x = \ddot{x} m \Leftrightarrow \ddot{x} = \frac{k \Delta_x}{m} \end{equation*} -Die funktion die diese Differentialgleichung löst ist die harmonische Schwingung +Die Funktion die diese Differentialgleichung löst, ist die harmonische Schwingung \begin{equation} x(t) = A \cos(\omega_0 t + \Phi), \quad \omega_0 = \sqrt{\frac{k}{m}} \end{equation} - - \begin{figure} \input{papers/kra/images/simple_mass_spring.tex} \caption{Einfaches Feder-Masse-System.} \label{kra:fig:simple_mass_spring} \end{figure} - \begin{figure} \input{papers/kra/images/multi_mass_spring.tex} \caption{Feder-Masse-System mit zwei Massen und drei Federn.} \label{kra:fig:multi_mass_spring} \end{figure} - \subsection{Hamilton-Funktion} Die Bewegung der Masse $m$ kann mit Hilfe der hamiltonschen Mechanik im Phasenraum untersucht werden. -Die hamiltonschen Gleichungen verwenden dafür die veralgemeinerten Ortskoordinaten +Die hamiltonschen Gleichungen verwenden dafür die verallgemeinerten Ortskoordinaten $q = (q_{1}, q_{2}, ..., q_{n})$ und die verallgemeinerten Impulskoordinaten $p = (p_{1}, p_{2}, ..., p_{n})$, wobei der Impuls definiert ist als $p_k = m_k \cdot v_k$. Liegen keine zeitabhängigen Zwangsbedingungen vor, so entspricht die Hamitlon-Funktion der Gesamtenergie des Systems \cite{kra:hamilton}. Im Falle des einfachen Feder-Masse-Systems, Abbildung \ref{kra:fig:simple_mass_spring}, setzt sich die Hamilton-Funktion aus kinetischer und potentieller Energie zusammen. - \begin{equation} \label{kra:harmonischer_oszillator} \begin{split} @@ -47,7 +42,6 @@ Im Falle des einfachen Feder-Masse-Systems, Abbildung \ref{kra:fig:simple_mass_s &= \underbrace{\frac{p^2}{2m}}_{E_{kin}} + \underbrace{\frac{k q^2}{2}}_{E_{pot}} \end{split} \end{equation} - Die Hamiltonschen Bewegungsgleichungen liefern \cite{kra:kanonischegleichungen} \begin{equation} \label{kra:hamilton:bewegungsgleichung} @@ -55,17 +49,13 @@ Die Hamiltonschen Bewegungsgleichungen liefern \cite{kra:kanonischegleichungen} \qquad \dot{p_{k}} = -\frac{\partial \mathcal{H}}{\partial q_k} \end{equation} - daraus folgt - \[ \dot{q} = \frac{p}{m} \qquad \dot{p} = -kq \] - in Matrixschreibweise erhalten wir also - \[ \begin{pmatrix} \dot{q} \\ @@ -81,11 +71,9 @@ in Matrixschreibweise erhalten wir also p \end{pmatrix} \] - Für das erweiterte Federmassesystem, Abbildung \ref{kra:fig:multi_mass_spring}, können wir analog vorgehen. Die kinetische Energie setzt sich nun aus den kinetischen Energien der einzelnen Massen $m_1$ und $m_2$ zusammen. Die Potentielle Energie erhalten wir aus der Summe der kinetischen Energien der einzelnen Federn mit den Federkonstanten $k_1$, $k_c$ und $k_2$. - \begin{align*} \begin{split} T &= T_1 + T_2 \\ @@ -97,16 +85,13 @@ Die Potentielle Energie erhalten wir aus der Summe der kinetischen Energien der &= \frac{k_1 q_1^2}{2} + \frac{k_c (q_2 - q_1)^2}{2} + \frac{k_2 q_2^2}{2} \end{split} \end{align*} - Die Hamilton-Funktion ist also - \begin{align*} \begin{split} \mathcal{H} &= T + V \\ &= \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} + \frac{k_1 q_1^2}{2} + \frac{k_c (q_2 - q_1)^2}{2} + \frac{k_2 q_2^2}{2} \end{split} \end{align*} - Die Bewegungsgleichungen \ref{kra:hamilton:bewegungsgleichung} liefern \begin{align*} \frac{\partial \mathcal{H}}{\partial p_k} & = \dot{q_k} @@ -127,9 +112,7 @@ Die Bewegungsgleichungen \ref{kra:hamilton:bewegungsgleichung} liefern \end{alignedat} \right. \end{align*} - In Matrixschreibweise erhalten wir - \begin{equation} \label{kra:hamilton:multispringmass} \begin{pmatrix} @@ -171,7 +154,7 @@ In Matrixschreibweise erhalten wir \end{equation} \subsection{Phasenraum} -Der Phasenraum erlaubt die eindeutige Beschreibung aller möglichen Bewegungszustände eines mechanischen System durch einen Punkt. +Der Phasenraum erlaubt die eindeutige Beschreibung aller möglichen Bewegungszustände eines mechanischen Systems durch einen Punkt. Die Phasenraumdarstellung eignet sich somit sehr gut für die systematische Untersuchung der Feder-Masse-Systeme. \subsubsection{Harmonischer Oszillator} @@ -181,7 +164,6 @@ Die Hamiltonfunktion des harmonischen Oszillators \ref{kra:harmonischer_oszillat \end{equation*} die Phasenraumtrajektorien bilden also Ellipsen mit Zentrum $q=0, p=0$ und Halbachsen $A$ und $m \omega A$. Abbildung \ref{kra:fig:phasenraum} zeigt Phasenraumtrajektorien mit den Energien $E_{x \in \{A, B, C, D\}}$ und verschiedenen Werten von $\omega$. - \begin{figure} \input{papers/kra/images/phase_space.tex} \caption{Phasenraumdarstellung des einfachen Feder-Masse-Systems.} @@ -191,7 +173,6 @@ Abbildung \ref{kra:fig:phasenraum} zeigt Phasenraumtrajektorien mit den Energien \subsubsection{Erweitertes Feder-Masse-System} Wir intressieren uns nun dafür wie der Phasenwinkel $U = PQ^{-1}$ von der Zeit abhängt, wir suchen also die Grösse $\Theta = \dt U$. - Ersetzten wir in der Gleichung \ref{kra:hamilton:multispringmass} die Matrix $G$ mit $\tilde{G}$ so erhalten wir \begin{equation} \dt @@ -211,9 +192,7 @@ Ersetzten wir in der Gleichung \ref{kra:hamilton:multispringmass} die Matrix $G$ P \end{pmatrix} \end{equation} - Mit einsetzten folgt - \begin{align*} \dot{Q} = AQ + BP \\ \dot{P} = CQ + DP @@ -227,9 +206,7 @@ Mit einsetzten folgt &= C + DU - UA - UBU \end{split} \end{equation} +was uns auf die Matrix-Riccati Gleichung \ref{kra:equation:matrixriccati} führt. -was uns auf die Matrix-Riccati Gleichung \ref{kra:matrixriccati} führt. - - -\subsection{Fazit} -% @TODO +% @TODO Einfluss auf anfangsbedingungen, plots? +% @TODO Fazit ? diff --git a/buch/papers/kra/einleitung.tex b/buch/papers/kra/einleitung.tex index 1a347a8..cde2e66 100644 --- a/buch/papers/kra/einleitung.tex +++ b/buch/papers/kra/einleitung.tex @@ -1,14 +1,14 @@ \section{Einleitung} \label{kra:section:einleitung} \rhead{Einleitung} -Die riccatische Differentialgleichung ist eine nichtlineare gewöhnliche Differentialgleichunge erster Ordnung der form +Die riccatische Differentialgleichung ist eine nicht lineare gewöhnliche Differentialgleichung erster Ordnung der Form \begin{equation} - \label{kra:riccati} - y'(x) = f(x)y^2(x) + g(x)y(x) + h(x) + \label{kra:equation:riccati} + y' = f(x)y + g(x)y^2 + h(x) \end{equation} -Sie ist bennant nach dem italienischen Grafen Jacopo Francesco Riccati (1676–1754) der sich mit der Klassifizierung von Differentialgleichungen befasste und Methoden zur Verringerung der Ordnung von Gleichungen entwickelte. -Als Riccati Gleichung werden auch Matrixgleichugen der Form +Sie ist benannt nach dem italienischen Grafen Jacopo Francesco Riccati (1676–1754) der sich mit der Klassifizierung von Differentialgleichungen befasste. +Als Riccati Gleichung werden auch Matrixgleichungen der Form \begin{equation} - \label{kra:matrixriccati} - \dot{U}(t) = DU(t) - UA(t) - U(t)BU(t) % +Q ? + \label{kra:equation:matrixriccati} + \dot{X}(t) = C + DX(t) - X(t)A -X(t)BX(t) \end{equation} -bezeichnet, welche aufgrund ihres quadratischen Terms eine gewisse ähnlichkeit aufweisen.
\ No newline at end of file +bezeichnet, welche aufgrund ihres quadratischen Terms eine gewisse Ähnlichkeit aufweisen \cite{kra:ethz} \cite{kra:riccati}. diff --git a/buch/papers/kra/loesung.tex b/buch/papers/kra/loesung.tex index ece0f15..4e0da1c 100644 --- a/buch/papers/kra/loesung.tex +++ b/buch/papers/kra/loesung.tex @@ -1,11 +1,53 @@ \section{Lösungsmethoden} \label{kra:section:loesung} \rhead{Lösungsmethoden} -% @TODO Lösung normal riccati -Lösung der Riccatischen Differentialgleichung \ref{kra:riccati}. +\subsection{Riccatische Differentialgleichung} \label{kra:loesung:riccati} +Eine allgemeine analytische Lösung der Riccati Differentialgleichung ist nicht möglich. +Es gibt aber Spezialfälle, in denen sich die Gleichung vereinfachen lässt und so eine analytische Lösung gefunden werden kann. +Diese wollen wir im folgenden Abschnitt genauer anschauen. +\subsubsection{Fall 1: Konstante Koeffizienten} +Sind die Koeffizienten $f(x), g(x), h(x)$ Konstanten, so lässt sich die DGL separieren und reduziert sich auf die Lösung des Integrals \ref{kra:equation:case1_int}. +\begin{equation} + y' = fy^2 + gy + h +\end{equation} +\begin{equation} + \frac{dy}{dx} = fy^2 + gy + h +\end{equation} +\begin{equation} \label{kra:equation:case1_int} + \int \frac{dy}{fy^2 + gy + h} = \int dx +\end{equation} + +\subsubsection{Fall 2: Bekannte spezielle Lösung} +Kennt man eine spezielle Lösung $y_p$ so kann die riccatische DGL mit Hilfe einer Substitution auf eine lineare Gleichung reduziert werden. +Wir wählen als Substitution +\begin{equation} \label{kra:equation:substitution} + z = \frac{1}{y - y_p} +\end{equation} +durch Umstellen von \ref{kra:equation:substitution} folgt +\begin{equation} + y = y_p + \frac{1}{z^2} \label{kra:equation:backsubstitution} +\end{equation} +\begin{equation} + y' = y_p' - \frac{1}{z^2}z' +\end{equation} +mit Einsetzten in die DGL \ref{kra:equation:riccati} folgt +\begin{equation} + y_p' - \frac{1}{z^2}z' = f(x)(y_p + \frac{1}{z}) + g(x)(y_p + \frac{1}{z})^2 + h(x) +\end{equation} +\begin{equation} + -z^{2}y_p' + z' = -z^2\underbrace{(y_{p}f(x) + g(x)y_p^2 + h(x))}_{y_p'} - z(f(x) + 2y_{p}g(x)) - g(x) +\end{equation} +was uns direkt auf eine lineare Differentialgleichung 1.Ordnung führt. +\begin{equation} + z' = -z(f(x) + 2y_{p}g(x)) - g(x) +\end{equation} +Diese kann nun mit den Methoden zur Lösung von linearen Differentialgleichungen 1.Ordnung gelöst werden. +Durch die Rücksubstitution \ref{kra:equation:backsubstitution} erhält man dann die Lösung von \ref{kra:equation:riccati}. + +\subsection{Matrix-Riccati Differentialgleichung} \label{kra:loesung:riccati} % Lösung matrix riccati -Die Lösung der Matrix-Riccati Gleichung \ref{kra:matrixriccati} erhalten wir nach \cite{kra:kalmanisae} folgendermassen +Die Lösung der Matrix-Riccati Gleichung \ref{kra:equation:matrixriccati} erhalten wir nach \cite{kra:kalmanisae} folgendermassen \begin{equation} \label{kra:matrixriccati-solution} \begin{pmatrix} @@ -28,7 +70,6 @@ Die Lösung der Matrix-Riccati Gleichung \ref{kra:matrixriccati} erhalten wir na U_0(t) \end{pmatrix} \end{equation} - \begin{equation} U(t) = \begin{pmatrix} @@ -39,9 +80,7 @@ Die Lösung der Matrix-Riccati Gleichung \ref{kra:matrixriccati} erhalten wir na \end{pmatrix} ^{-1} \end{equation} - -wobei $\Phi(t, t_0)$ die sogennante Zustandsübergangsmatrix ist. - +wobei $\Phi(t, t_0)$ die sogenannte Zustandsübergangsmatrix ist. \begin{equation} \Phi(t_0, t) = e^{H(t - t_0)} \end{equation} diff --git a/buch/papers/kra/references.bib b/buch/papers/kra/references.bib index 7f972ec..a9a8ede 100644 --- a/buch/papers/kra/references.bib +++ b/buch/papers/kra/references.bib @@ -4,6 +4,19 @@ % (c) 2020 Autor, Hochschule Rapperswil % +@misc{kra:riccati, +title = {Riccatische Differentialgleichung}, +url = {https://de.wikipedia.org/wiki/Riccatische_Differentialgleichung}, +date = {2022-05-26} +} + +@misc{kra:ethz, +author = {Ch. Roduner}, +title = {Die-Riccati-Gleichung}, +url = {https://www.imrtweb.ethz.ch/users/geering/Riccati.pdf}, +date = {2022-05-26} +} + @online{kra:hamilton, title = {Hamilton-Funktion}, url = {https://de.wikipedia.org/wiki/Hamilton-Funktion}, @@ -28,3 +41,5 @@ url = {https://pagespro.isae-supaero.fr/IMG/pdf/introKalman_e_151211.pdf}, date = {2022-05-26} } + + |