aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers')
-rw-r--r--buch/papers/sturmliouville/eigenschaften.tex18
-rw-r--r--buch/papers/sturmliouville/waermeleitung_beispiel.tex36
2 files changed, 20 insertions, 34 deletions
diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex
index 8616172..fc9c3da 100644
--- a/buch/papers/sturmliouville/eigenschaften.tex
+++ b/buch/papers/sturmliouville/eigenschaften.tex
@@ -5,20 +5,6 @@
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-% TODO:
-% state goal
-% use only what is necessary
-% make sure it is easy enough to understand (sentences as shot as possible)
-% -> Eigenvalue problem with matrices only
-% -> prepare reader for following examples
-%
-% order:
-% 1. Eigenvalue problems with matrices
-% 2. Sturm-Liouville is an Eigenvalue problem
-% 3. Sturm-Liouville operator (self-adjacent)
-% 4. Spectral theorem (brief)
-% 5. Base of orthonormal functions
-
\section{Eigenschaften von Lösungen
\label{sturmliouville:sec:solution-properties}}
\rhead{Eigenschaften von Lösungen}
@@ -99,9 +85,9 @@ Analog zur Matrix $A$ aus
Abschnitt~\ref{sturmliouville:sec:eigenvalue-problem-matrix} kann auch für
$L$ gezeigt werden, dass dieser Operator selbstadjungiert ist, also dass
\[
- \langle L v, w\rangle
+ \langle L u, v\rangle
=
- \langle v, L w\rangle
+ \langle u, L v\rangle
\]
gilt.
Wie in Kapitel~\ref{buch:integrale:subsection:sturm-liouville-problem} bereits
diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex
index 19dad5e..30ba8f6 100644
--- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex
+++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex
@@ -5,12 +5,11 @@
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\section{Fourierreihe als Lösung des Sturm-Liouville-Problems
-(Wärmeleitung)}
+\section{Wärmeleitung in homogenem Stab}
In diesem Abschnitt wird das Problem der Wärmeleitung in einem homogenen Stab
betrachtet, angeschaut wie das Sturm-Liouville-Problem bei der Beschreibung
-dieses physikalischen Phänomenes auftritt und hergeleitet wie die Fourierreihe
+dieses physikalischen Phänomens auftritt und hergeleitet wie die Fourierreihe
als Lösung des Problems zustande kommt.
Zunächst wird ein eindimensionaler homogener Stab der Länge $l$ und
@@ -113,7 +112,7 @@ der neuen Variablen $\mu$ gekoppelt werden:
=
\frac{X^{\prime \prime}(x)}{X(x)}
=
- \mu
+ \mu.
\]
Durch die Einführung von $\mu$ kann das Problem nun in zwei separate
Differenzialgleichungen aufgeteilt werden:
@@ -127,7 +126,7 @@ Differenzialgleichungen aufgeteilt werden:
\label{sturmliouville:eq:example-fourier-separated-t}
T^{\prime}(t) - \kappa \mu T(t)
=
- 0
+ 0.
\end{equation}
%
@@ -137,7 +136,7 @@ Differenzialgleichungen aufgeteilt werden:
Es ist an dieser Stelle zu bemerken, dass die Gleichung in $x$ in
Sturm-Liouville-Form ist.
Erfüllen die Randbedingungen des Stab-Problems auch die Randbedingungen des
-Sturm-Liouville-Problems, kann bereits die Aussage getroffen werden, dass alle
+Sturm-Liouville-Problems, kann bereits die Aussage gemacht werden, dass alle
Lösungen für die Gleichung in $x$ orthogonal sein werden.
Da die Bedingungen des Stab-Problems nur Anforderungen an $x$ stellen, können
@@ -259,14 +258,14 @@ ergibt dies
=
0
\]
-und durch umformen somit
+und durch Umformen somit
\[
-\alpha^{2}A\cos(\alpha x) - \beta^{2}B\sin(\beta x)
=
\mu A\cos(\alpha x) + \mu B\sin(\beta x).
\]
-Mittels Koeffizientenvergleich von
+Mittels Koeffizientenvergleich auf beiden Seiten von
\[
\begin{aligned}
-\alpha^{2}A\cos(\alpha x)
@@ -297,7 +296,7 @@ für einen Stab mit Enden auf konstanter Temperatur in die
Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} eingesetzt.
Betrachten wir zunächst die Bedingung für $x = 0$.
-Dies fürht zu
+Dies führt zu
\[
X(0)
=
@@ -324,7 +323,7 @@ Es bleibt noch nach $\beta$ aufzulösen:
\begin{aligned}
\sin(\beta l) &= 0 \\
\beta l &= n \pi \qquad n \in \mathbb{N}_0 \\
- \beta &= \frac{n \pi}{l} \qquad n \in \mathbb{N}_0
+ \beta &= \frac{n \pi}{l} \qquad n \in \mathbb{N}_0.
\end{aligned}
\]
@@ -472,14 +471,14 @@ Skalarprodukt mit der Basisfunktion $ \cos\left(\frac{m \pi}{l}x\right)$
gebildet:
\begin{equation}
\label{sturmliouville:eq:dot-product-cosine}
- \langle u(0, x), \cos\left(\frac{m \pi}{l}x\right) \rangle
+ \biggl\langle u(0, x), \cos\left(\frac{m \pi}{l}x\right) \biggr\rangle
=
- \langle a_0
+ \biggl\langle a_0
+
\sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right)
+
\sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right),
- \cos\left(\frac{m \pi}{l}x\right)\rangle
+ \cos\left(\frac{m \pi}{l}x\right)\biggr\rangle
\end{equation}
Bevor diese Form in die Integralform umgeschrieben werden kann, muss überlegt
@@ -513,7 +512,7 @@ gerade, respektive ungerade auf $[-l, 0]$ fortsetzen:
\]
Diese Funktionen wurden gerade so gewählt, dass nun das Resultat der Integrale
-um den Faktor zwei skalliert wurde.
+um den Faktor $2$ skalliert wurde.
Es gilt also
\[
\int_{-l}^{l}\hat{u}_c(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
@@ -586,8 +585,9 @@ Es bleibt also lediglich der Summand mit $a_m$ stehen, was die Gleichung zu
vereinfacht.
Im nächsten Schritt wird nun das Integral auf der rechten Seite
-berechnet und dann nach $a_m$ aufgelöst. Am einnfachsten geht dies, wenn zuerst
-mit $u = \frac{m \pi}{l}x$ substituiert wird:
+berechnet und dann nach $a_m$ aufgelöst.
+Am einfachsten geht dies, wenn zuerst mit $u = \frac{m \pi}{l}x$ substituiert
+wird:
\[
\begin{aligned}
2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
@@ -609,7 +609,7 @@ mit $u = \frac{m \pi}{l}x$ substituiert wird:
\\
a_m
&=
- \frac{2}{l} \int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
+ \frac{2}{l} \int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx.
\end{aligned}
\]
@@ -676,7 +676,7 @@ was sich wie folgt nach $a_0$ auflösen lässt:
\\
a_0
&=
- \frac{1}{l} \int_{0}^{l}u(0, x)dx
+ \frac{1}{l} \int_{0}^{l}u(0, x)dx.
\end{aligned}
\]