diff options
Diffstat (limited to 'buch')
-rw-r--r-- | buch/chapters/060-integral/erweiterungen.tex | 128 | ||||
-rw-r--r-- | buch/chapters/060-integral/rational.tex | 1 |
2 files changed, 128 insertions, 1 deletions
diff --git a/buch/chapters/060-integral/erweiterungen.tex b/buch/chapters/060-integral/erweiterungen.tex index f88f6e3..d5c7c72 100644 --- a/buch/chapters/060-integral/erweiterungen.tex +++ b/buch/chapters/060-integral/erweiterungen.tex @@ -5,8 +5,134 @@ % \subsection{Körpererweiterungen \label{buch:integral:subsection:koerpererweiterungen}} +Das Beispiel des Körpers $\mathbb{Q}(\!\sqrt{2})$ auf Seite +\pageref{buch:integral:beispiel:Qsqrt2} illustriert eine Möglichkeit, +einen kleinen Körper zu vergrössern. +Das Prinzip ist verallgemeinerungsfähig und soll in diesem Abschnitt +erarbeitet werden. + % % algebraische Zahl-Erweiterungen +\subsubsection{Algebraische Erweiterungen} +Der Körper $\mathbb{Q}(\!\sqrt{2})$ entsteht aus dem Körper $\mathbb{Q}$ +dadurch, dass man die Zahl $\sqrt{2}$ hinzufügt und alle erlaubten +arithmetischen Operationen zulässt. +Die Darstellung von Elementen von $\mathbb{Q}(\!\sqrt{2})$ als +$a+b\sqrt{2}$ ist möglich, weil die Zahl $\alpha=\sqrt{2}$ die +algebraische Relation +\[ +\alpha^2-2 = \sqrt{2}^2 -2 = 0 +\] +erfüllt. +Voraussetzung für diese Aussage ist, dass es die Zahl $\sqrt{2}$ in einem +geeigneten grösseren Körper gibt. +Die reellen oder komplexen Zahlen bilden einen solchen Körper. +Wir verallemeinern diese Situation wie folgt. + +\begin{definition} +Ist $K$ ein Körper, dann heisst ein Körper $L$ mit $K\subset L$ ein +{\em Erweiterungskörper} von $K$. +\index{Erweiterungskoerper@Erweiterungskörper} +\end{definition} + +\begin{definition} +\label{buch:integral:definition:algebraisch} +Sei $K\subset L$ eine Körpererweiterung. +Das Element $\alpha\in L$ heisst {\em algebraisch} über $K$, wenn es +ein Polynom $p(x)\in K[x]$ gibt derart, dass $\alpha$ eine Nullstelle +von $p(x)$ ist, also gibt mit $p(\alpha)=0$. +Das normierte Polynom $m(x)$ geringsten Grades, welches $m(\alpha)=0$ +erfüllt, heisst das {\em Minimalpolynom} von $\alpha$. +\index{Minimalpolynom}% +\end{definition} + +Man sagt auch $\alpha$ ist algebraisch vom Grad $n$, wenn das Minimalpolynom +den Grad $n$ hat. +Wenn $\alpha\ne 0$ algebraisch ist, dann ist auch $1/\alpha$ algebraisch, +wie das folgende Argument zeigt. +Für das Minimalpolynom $m(x)$ von $\alpha$, ist $m(\alpha)=0$. +Teilt man diese Gleichung durch $\alpha^n$ teilt, erhält man +\[ +m_0\frac{1}{\alpha^n} ++ +m_1\frac{1}{\alpha^{n-1}} ++ +\ldots ++ +m_{n-1}\frac{1}{\alpha} ++ +1 += +0, +\] +das Polynom +\[ +\hat{m}(x) += +m_0x^n + m_1x^{n-1} + \ldots m_{n-1} x + 1 +\in +K[x] +\] +hat also $\alpha^{-1}$ als Nullstelle. +Das Polynom $\hat{m}(x)$ beweist daher, dass $\alpha^{-1}$ algebraisch ist. + +Die Zahl $\sqrt{2}\in\mathbb{R}$ ist also algebraisch über $\mathbb{Q}$ +und jede andere Quadratwurzel von Elementen von $\mathbb{Q}$ ist +ebenfalls algebraisch über $\mathbb{Q}$. +Auch der Körper $\mathbb{Q}(\alpha)$ kann für jede andere Quadratwurzel +auf die genau gleiche Art wie für $\sqrt{2}$ konstruiert werden. + +\begin{definition} +\label{buch:integral:definition:algebraischeerweiterung} +Sei $K\subset L$ eine Körpererweiterung und $\alpha\in L$ ein algebraisches +Element mit Minimalpolynom $m(x)\in K[x]$. +Dann heisst die Menge +\begin{equation} +K(\alpha) += +\{ +a_0 + a_1\alpha + \ldots +a_n\alpha^n +\;|\; +a_i\in K +\} +\label{buch:integral:eqn:algelement} +\end{equation} +mit $n=\deg m(x) - 1$ der durch Adjunktion von $\alpha$ erhaltene +Erweiterungsköper. +\end{definition} + +Wieder muss nur überprüft werden, dass jedes Produkt oder jeder +Quotient von Ausdrücken der Form~\eqref{buch:integral:eqn:algelement} +wieder in diese Form gebracht werden kann. +Dazu sei +\[ +m(x) += +m_0+m_1x + m_2x^2 ++\ldots +m_{n-1}x^{n-1} + x^n +\] +das Minimalpolynom von $\alpha$. +Die Gleichung $m(\alpha)=0$ kann nach $\alpha^n$ aufgelöst werden und +liefert +\[ +\alpha^n = -m_0 - m_1\alpha - m_2\alpha^2 -\ldots -m_{n-1}\alpha^{n-1}. +\] +Damit kann jede Potenz von $\alpha$ mit einem Exponenten grösser als $n$ +in eine Linearkombination von Potenzen mit kleineren Exponenten +reduziert werden. +Ein Polynom in $\alpha$ kann also immer auf die +Form~\eqref{buch:integral:eqn:algelement} +gebracht werden. + +XXX Quotienten + % rationale Funktionen als Körpererweiterungen +\subsubsection{Rationale Funktionen als Körpererweiterung} + % Erweiterungen mit algebraischen Funktionen -% +\subsubsection{Algebraische Funktionen} + +% Transzendente Körpererweiterungen +\subsubsection{Transzendente Erweiterungen} + + diff --git a/buch/chapters/060-integral/rational.tex b/buch/chapters/060-integral/rational.tex index 989e65b..9cef3a7 100644 --- a/buch/chapters/060-integral/rational.tex +++ b/buch/chapters/060-integral/rational.tex @@ -92,6 +92,7 @@ Es lassen sich allerdings auch Zahlkörper zwischen $\mathbb{Q}$ und $\mathbb{R}$ konstruieren, wie das folgende Beispiel zeigt. \begin{beispiel} +\label{buch:integral:beispiel:Qsqrt2} Die Menge \[ \mathbb{Q}(\!\sqrt{2}) |