1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
#
# fibonacci.m
#
# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
global phi1;
phi1 = (1+sqrt(5)) / 2;
phi2 = (1-sqrt(5)) / 2;
global logphi1;
logphi1 = log(phi1)
global logphi2;
logphi2 = log(phi2)
global s;
s = 0.1;
A = [ 1, 1; phi1, phi2 ];
b = [ 0; 1 ];
global a;
a = A \ b
global xmin;
xmin = 0;
global xmax;
xmax = 10;
global ylim;
ylim = 10;
global N;
N = 200;
function retval = fibonacci(n)
global a;
global logphi1;
global logphi2;
retval = a(1,1) * exp(n * logphi1) + a(2,1) * exp(n * logphi2);
endfunction
for n = (0:10)
fibonacci(n)
endfor
function punkt(fn, z)
if (abs(z) > 100)
z = 100 * z / abs(z);
endif
fprintf(fn, "(%.5f,%.5f)", real(z), imag(z));
endfunction
function drawline(fn, p, color,lw)
global N;
fprintf(fn, "\\draw[color=%s,line width=%.1fpt] ", color, lw);
punkt(fn, p(1));
for i = (2:N+1)
fprintf(fn, "\n\t--");
punkt(fn, p(i));
endfor
fprintf(fn, ";\n");
endfunction
function realline(fn, x, ymin, ymax, color, lw)
global N;
h = (ymax - ymin) / N;
fprintf(fn, "%% real line for x = %f, h = %f\n", x, h);
count = 1;
for y = ymin + (0:N) * h
z(count) = fibonacci(x + i * y);
count = count + 1;
endfor
drawline(fn, z, color, lw);
endfunction
function imaginaryline(fn, y, xmin, xmax, color, lw)
global N;
h = (xmax - xmin) / N;
fprintf(fn, "%% imaginary line for y = %f, h = %f\n", y, h);
count = 1;
for x = xmin + (0:N) * h
z(count) = fibonacci(x + i * y);
count = count + 1;
endfor
drawline(fn, z, color, lw);
endfunction
function fibmapping(fn, n, name, lw)
global s;
fprintf(fn, "\\def\\%s{\n", name);
for x = n + s*(-5:5)
realline(fn, x, -5*s, 5*s, "red", lw);
endfor
for y = s*(-5:5)
imaginaryline(fn, y, n-5*s, n+5*s, "blue", lw);
endfor
fprintf(fn, "}\n");
endfunction
function fibgrid(fn, lw)
global s;
fprintf(fn, "\\def\\fibgrid{\n");
for y = s*(-5:5)
imaginaryline(fn, y, -0.5, 6.5, "gray", lw);
endfor
for x = s*(-5:65)
realline(fn, x, -0.5, 0.5, "gray", lw);
endfor
fprintf(fn, "}\n");
endfunction
function fibcurve(fn, lw)
fprintf(fn, "\\def\\fibcurve{\n");
imaginaryline(fn, 0, 0, 6.5, "white", 1.2*lw);
imaginaryline(fn, 0, 0, 6.5, "darkgreen", lw);
for n = (0:6)
z = fibonacci(n);
fprintf(fn, "\\fill[color=darkgreen] ");
punkt(fn, z);
fprintf(fn, " circle[radius=0.08];\n");
fprintf(fn, "\\fill[color=white] ");
punkt(fn, z);
fprintf(fn, " circle[radius=0.04];\n");
endfor
fprintf(fn, "}\n");
endfunction
fn = fopen("fibonaccigrid.tex", "w");
fibmapping(fn, 0, "fibzero", 1);
fibmapping(fn, 1, "fibone", 1);
fibmapping(fn, 2, "fibtwo", 1);
fibmapping(fn, 3, "fibthree", 1);
fibmapping(fn, 4, "fibfour", 1);
fibmapping(fn, 5, "fibfive", 1);
fibmapping(fn, 6, "fibsix", 1);
fibgrid(fn, 0.3);
fibcurve(fn, 1.4);
fclose(fn);
|