1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
|
/*
* slcl.cpp
*
* (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
*/
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <iostream>
#include <fstream>
#include <sstream>
#include <getopt.h>
#include <vector>
#include <gsl/gsl_sf_elljac.h>
namespace slcl {
static struct option longopts[] {
{ "outfile", required_argument, NULL, 'o' },
{ "a", required_argument, NULL, 'a' },
{ "b", required_argument, NULL, 'b' },
{ "steps", required_argument, NULL, 'n' },
{ NULL, 0, NULL, 0 }
};
class plot {
typedef std::pair<double, double> point_t;
typedef std::vector<point_t> curve_t;
curve_t _sl;
curve_t _cl;
double _a;
double _b;
int _steps;
public:
double a() const { return _a; }
double b() const { return _b; }
int steps() const { return _steps; }
public:
plot(double a, double b, int steps) : _a(a), _b(b), _steps(steps) {
double l = sqrt(2);
double k = 1 / l;
double m = k * k;
double h = (b - a) / steps;
for (int i = 0; i <= steps; i++) {
double x = a + h * i;
double sn, cn, dn;
gsl_sf_elljac_e(x, m, &sn, &cn, &dn);
_sl.push_back(std::make_pair(l * x, k * sn / dn));
_cl.push_back(std::make_pair(l * x, cn));
}
}
private:
std::string point(const point_t p) const {
char buffer[128];
snprintf(buffer, sizeof(buffer), "({%.4f*\\dx},{%.4f*\\dy})",
p.first, p.second);
return std::string(buffer);
}
std::string path(const curve_t& curve) const {
std::ostringstream out;
auto i = curve.begin();
out << point(*(i++));
do {
out << std::endl << " -- " << point(*(i++));
} while (i != curve.end());
out.flush();
return out.str();
}
public:
std::string slpath() const {
return path(_sl);
}
std::string clpath() const {
return path(_cl);
}
};
/**
* \brief Main function for the slcl program
*/
int main(int argc, char *argv[]) {
int longindex;
int c;
double a = 0;
double b = 10;
int steps = 100;
std::ostream *out = &std::cout;
while (EOF != (c = getopt_long(argc, argv, "a:b:o:n:",
longopts, &longindex)))
switch (c) {
case 'a':
a = std::stod(optarg);
break;
case 'b':
b = std::stod(optarg) / sqrt(2);
break;
case 'n':
steps = std::stol(optarg);
break;
case 'o':
out = new std::ofstream(optarg);
break;
}
plot p(a, b, steps);
(*out) << "\\def\\slpath{ " << p.slpath();
(*out) << std::endl << " }" << std::endl;
(*out) << "\\def\\clpath{ " << p.clpath();
(*out) << std::endl << " }" << std::endl;
out->flush();
//out->close();
return EXIT_SUCCESS;
}
} // namespace slcl
int main(int argc, char *argv[]) {
try {
return slcl::main(argc, argv);
} catch (const std::exception& e) {
std::cerr << "terminated by exception: " << e.what();
std::cerr << std::endl;
} catch (...) {
std::cerr << "terminated by unknown exception" << std::endl;
}
return EXIT_FAILURE;
}
|