aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/kugel/spherical-harmonics.tex
blob: 404e151b6565c3178c000fd7992b22ba5421f1a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
% vim:ts=2 sw=2 et spell tw=80:

\section{Construction of the Spherical Harmonics}

\kugeltodo{Review text, or rewrite if preliminaries becomes an addendum}

We finally arrived at the main section, which gives our chapter its name. The
idea is to discuss spherical harmonics, their mathematical derivation and some
of their properties and applications.

The subsection \ref{} \kugeltodo{Fix references} will be devoted to the
Eigenvalue problem of the Laplace operator. Through the latter we will derive
the set of Eigenfunctions that obey the equation presented in \ref{}
\kugeltodo{reference to eigenvalue equation}, which will be defined as
\emph{Spherical Harmonics}. In fact, this subsection will present their
mathematical derivation.

In the subsection \ref{}, on the other hand, some interesting properties
related to them will be discussed. Some of these will come back to help us
understand in more detail why they are useful in various real-world
applications, which will be presented in the section \ref{}.

One specific property will be studied in more detail in the subsection \ref{},
namely the recursive property.  The last subsection is devoted to one of the
most beautiful applications (In our humble opinion), namely the derivation of a
Fourier-style series expansion but defined on the sphere instead of a plane.
More importantly, this subsection will allow us to connect all the dots we have
created with the previous sections, concluding that Fourier is just a specific
case of the application of the concept of orthogonality. Our hope is that after
reading this section you will appreciate the beauty and power of generalization
that mathematics offers us.

\subsection{Eigenvalue Problem}
\label{kugel:sec:construction:eigenvalue}

From Section \ref{buch:pde:section:kugel}, we know that the spherical Laplacian
in the spherical coordinate system (shown in Figure
\ref{kugel:fig:spherical-coordinates}) is is defined as
\begin{equation*}
    \sphlaplacian :=
      \frac{1}{r^2} \frac{\partial}{\partial r} \left(
        r^2 \frac{\partial}{\partial r}
      \right)
      + \frac{1}{r^2} \left[
          \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left(
            \sin\vartheta \frac{\partial}{\partial\vartheta}
          \right)
        + \frac{1}{\sin^2 \vartheta} \frac{\partial^2}{\partial\varphi^2}
      \right].
\end{equation*}
But we will not consider this algebraic monstrosity in its entirety. As the
title suggests, we will only care about the \emph{surface} of the sphere.  This
is for many reasons, but mainly to simplify reduce the already broad scope of
this text. Concretely, we will always work on the unit sphere, which just means
that we set $r = 1$ and keep only $\vartheta$ and $\varphi$ as free variables.
Now, since the variable $r$ became a constant, we can leave out all derivatives
with respect to $r$ and substitute all $r$'s with 1's to obtain a new operator
that deserves its own name.

\begin{definition}[Surface spherical Laplacian]
  \label{kugel:def:surface-laplacian}
  The operator
  \begin{equation*}
      \surflaplacian :=
        \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left(
          \sin\vartheta \frac{\partial}{\partial\vartheta}
        \right)
        + \frac{1}{\sin^2 \vartheta} \frac{\partial^2}{\partial\varphi^2},
  \end{equation*}
  is called the surface spherical Laplacian.
\end{definition}

In the definition, the subscript ``$\partial S$'' was used to emphasize the fact
that we are on the spherical surface, which can be understood as being the
boundary of the sphere. But what does it actually do? To get an intuition, first
of all, notice the fact that $\surflaplacian$ have second derivatives, which
means that this a measure of \emph{curvature}; But curvature of what? To get an
even stronger intuition we will go into geometry, were curvature can be grasped
very well visually. Consider figure \ref{kugel:fig:curvature} where the
curvature is shown using colors: positive curvature in red, and negative
curvature in blue. First we have the curvature of a curve in 1D, then the
curvature of a surface (2D), and finally the curvature of a function on the
surface of the unit sphere.

\begin{figure}
  \centering
  \includegraphics[width=.3\linewidth]{papers/kugel/figures/tikz/curvature-1d}
  \hskip 5mm
  \includegraphics[width=.3\linewidth]{papers/kugel/figures/povray/curvature}
  \hskip 5mm
  \includegraphics[width=.3\linewidth]{papers/kugel/figures/povray/spherecurve}
  \caption{
    \kugeltodo{Fix alignment / size, add caption. Would be nice to match colors.}
    \label{kugel:fig:curvature}
  }
\end{figure}

Now that we have defined an operator, we can go and study its eigenfunctions,
which means that we would like to find the functions $f(\vartheta, \varphi)$
that satisfy the equation
\begin{equation} \label{kugel:eqn:eigen}
    \surflaplacian f = -\lambda f.
\end{equation}
Perhaps it may not be obvious at first glance, but we are in fact dealing with a
partial differential equation (PDE)\footnote{Considering the fact that we are
dealing with a PDE, you may be wondering what are the boundary conditions. Well,
since this eigenvalue problem is been developed on the spherical surface
(boundary of a sphere), the boundary in this case are empty, i.e no boundary
condition has to be considered.}. If we unpack the notation of the operator
$\nabla^2_{\partial S}$ according to definition
\ref{kugel:def:surface-laplacian}, we get:
\begin{equation} \label{kugel:eqn:eigen-pde}
    \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left(
      \sin\vartheta \frac{\partial f}{\partial\vartheta}
    \right)
    + \frac{1}{\sin^2 \vartheta} \frac{\partial^2 f}{\partial\varphi^2}
    + \lambda f = 0.
\end{equation}
Since all functions satisfying \eqref{kugel:eqn:eigen-pde} are the
\emph{eigenfunctions} of $\surflaplacian$, our new goal is to solve this PDE.
The task may seem very difficult but we can simplify it with a well-known
technique: \emph{the separation Ansatz}. It consists in assuming that the
function $f(\vartheta, \varphi)$ can be factorized in the following form:
\begin{equation}
    f(\vartheta, \varphi) = \Theta(\vartheta)\Phi(\varphi). 
\end{equation}
In other words, we are saying that the effect of the two independent variables
can be described using the multiplication of two functions that describe their
effect separately. This separation process was already presented in section
\ref{buch:pde:section:kugel}, but we will briefly rehearse it here for
convenience. If we substitute this assumption in
\eqref{kugel:eqn:eigen-pde}, we have:
\begin{equation*}
    \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left(
      \sin\vartheta \frac{\partial  \Theta(\vartheta)}{\partial\vartheta}
    \right) \Phi(\varphi)
    + \frac{1}{\sin^2 \vartheta}
      \frac{\partial^2 \Phi(\varphi)}{\partial\varphi^2}
      \Theta(\vartheta)
    + \lambda \Theta(\vartheta)\Phi(\varphi) = 0.
\end{equation*}
Dividing by $\Theta(\vartheta)\Phi(\varphi)$ and introducing an auxiliary
variable $m^2$, the separation constant, yields:
\begin{equation*}
  \frac{1}{\Theta(\vartheta)}\sin \vartheta \frac{d}{d \vartheta} \left(
    \sin \vartheta \frac{d \Theta}{d \vartheta}
  \right)
  + \lambda \sin^2 \vartheta
  = -\frac{1}{\Phi(\varphi)} \frac{d^2\Phi(\varphi)}{d\varphi^2}
  = m^2,
\end{equation*}
which is equivalent to the following system of 2 first order differential
equations (ODEs):
\begin{subequations}
  \begin{gather}
    \frac{d^2\Phi(\varphi)}{d\varphi^2} = -m^2 \Phi(\varphi),
      \label{kugel:eqn:ode-phi} \\ 
    \sin \vartheta \frac{d}{d \vartheta} \left(
      \sin \vartheta \frac{d \Theta}{d \vartheta}
    \right)
    + \left( \lambda - \frac{m^2}{\sin^2 \vartheta} \right)
      \Theta(\vartheta) = 0
      \label{kugel:eqn:ode-theta}.
  \end{gather}
\end{subequations}
The solution of \eqref{kugel:eqn:ode-phi} is easy to find: The complex
exponential is obviously the function we are looking for. So we can directly
write the solutions
\begin{equation} \label{kugel:eqn:ode-phi-sol}
    \Phi(\varphi) = e^{i m \varphi}, \quad m \in \mathbb{Z}.
\end{equation}
The restriction that the separation constant $m$ needs to be an integer arises
from the fact that we require a $2\pi$-periodicity in $\varphi$ since the
coordinate systems requires that $\Phi(\varphi + 2\pi) = \Phi(\varphi)$.
Unfortunately, solving \eqref{kugel:eqn:ode-theta} is not as straightforward,
actually, it is quite difficult, and the process is so involved that it will
require a dedicated section of its own.

\subsection{Legendre Functions}

\begin{figure}
  \centering
  \subfigure[Spherical coordinates. \label{kugel:fig:spherical-coordinates}]
    {\includegraphics[width=.45\linewidth]{papers/kugel/figures/tikz/spherical-coordinates}}
  \qquad
  \subfigure[Substitution. \label{kugel:fig:legendre-substitution}]
    {\includegraphics[
      width=.45\linewidth
      % scale = 1.2,
      % trim = 0 40 0 0, clip,
    ]{papers/kugel/figures/tikz/legendre-substitution}}
  \caption{
    (a) Spherical coordinate system. Space is described with the free variables
    $r \in \mathbb{R}_0^+$, $\vartheta \in [0; \pi]$ and $\varphi \in [0;
    2\pi)$. (b) Geometrical intuition for the substitution to obtain the
    Legendre equation.
  }
\end{figure}

To solve \eqref{kugel:eqn:ode-theta} we start with the substitution $z = \cos
\vartheta$, which has a neat geometrical justification. To see it consider
figure \ref{kugel:fig:legendre-substitution}, where we sketched the geometry of
the problem. Algebraically, the operator $\frac{d}{d \vartheta}$ becomes
\begin{equation*}
    \frac{d}{d \vartheta}
    = \frac{dz}{d \vartheta}\frac{d}{dz}
    = -\sin \vartheta \frac{d}{dz}
    = -\sqrt{1-z^2} \frac{d}{dz},
\end{equation*} 
since $\sin \vartheta = \sqrt{1 - \cos^2 \vartheta} = \sqrt{1 - z^2}$, which
agrees with our sketch. Thus, \eqref{kugel:eqn:ode-theta} becomes 
\begin{align*}
  \frac{-\sqrt{1-z^2}}{\sqrt{1-z^2}} \frac{d}{dz} \left[
    \left(\sqrt{1-z^2}\right) \left(-\sqrt{1-z^2}\right) \frac{d \Theta}{dz}
  \right]
  + \left( \lambda - \frac{m^2}{1 - z^2} \right)\Theta(\vartheta) &= 0,
  \\
  \frac{d}{dz} \left[ (1-z^2) \frac{d \Theta}{dz} \right]
  + \left( \lambda - \frac{m^2}{1 - z^2} \right)\Theta(\vartheta) &= 0,
  \\
  (1-z^2)\frac{d^2 \Theta}{dz} - 2z\frac{d \Theta}{dz}
  + \left( \lambda - \frac{m^2}{1 - z^2} \right)\Theta(\vartheta) &= 0.
\end{align*}
By making two final cosmetic substitutions, namely $Z(z) = \Theta(\cos^{-1}z)$
and $\lambda = n(n+1)$, we obtain what is known in the literature as the
\emph{associated Legendre equation of order $m$}:
\nocite{olver_introduction_2013}
\begin{equation} \label{kugel:eqn:associated-legendre}
  (1 - z^2)\frac{d^2 Z}{dz^2}
  - 2z\frac{d Z}{dz}
  + \left( n(n + 1) - \frac{m^2}{1 - z^2} \right) Z(z) = 0,
  \quad
  z \in [-1; 1], m \in \mathbb{Z}.
\end{equation}

Our new goal has therefore become to solve
\eqref{kugel:eqn:associated-legendre}, since if we find a solution for $Z(z)$ we
can perform the substitution backwards and get back to our eigenvalue problem.
However, the associated Legendre equation is not any easier, so to attack the
problem we will look for the solutions in the easier special case when $m = 0$.
This reduces the problem because it removes the double pole, which is always
tricky to deal with\footnote{It however to notice that the differential equation
is still singular because of the factor in front of the second derivative of
$Z$}. In fact, the reduced problem when $m = 0$ is known as the \emph{Legendre
equation}:
\begin{equation} \label{kugel:eqn:legendre}
  (1 - z^2)\frac{d^2 Z}{dz^2}
  - 2z\frac{d Z}{dz}
  + n(n + 1) Z(z) = 0,
  \quad
  z \in [-1; 1].
\end{equation}

The Legendre equation is a second order differential equation, and therefore it
has 2 independent solutions, which are known as \emph{Legendre functions} of the
first and second kind. For the scope of this text we will only derive a special
case of the former that is known known as the \emph{Legendre polynomials}, since
we only need a solution between $-1$ and $1$.

\begin{lemma}[Legendre polynomials]
  \label{kugel:thm:legendre-poly}
  The polynomial function
  \[
    P_n(z) = \sum^{\lfloor n/2 \rfloor}_{k=0}
      \frac{(-1)^k}{2^n s^k!} \frac{(2n - 2k)!}{(n - k)! (n-2k)!} z^{n - 2k}
  \]
  is the only finite solution of the Legendre equation
  \eqref{kugel:eqn:legendre} when $n \in \mathbb{Z}$ and $z \in [-1; 1]$.
\end{lemma}
\begin{proof}
  This results is derived in section \ref{kugel:sec:proofs:legendre}.
\end{proof}

Since the Legendre \emph{polynomials} are indeed polynomials, they can also be
expressed using the hypergeometric functions described in section
\ref{buch:rekursion:section:hypergeometrische-funktion}, so in fact
\begin{equation}
  P_n(z) = {}_2F_1 \left( \begin{matrix}
    n + 1, & -n \\ \multicolumn{2}{c}{1}
  \end{matrix} ; \frac{1 - z}{2} \right).
\end{equation}
Further, there are a few more interesting but not very relevant forms to write
$P_n(z)$ such as \emph{Rodrigues' formula} and \emph{Laplace's integral
representation} which are
\begin{equation*}
  P_n(z) = \frac{1}{2^n n!} \frac{d^n}{dz^n} (z^2 - 1)^n,
  \qquad \text{and} \qquad
  P_n(z) = \frac{1}{\pi} \int_0^\pi \left(
    z + \cos\vartheta \sqrt{z^2 - 1}
  \right) \, d\vartheta
\end{equation*}
respectively, both of which we will not prove (see chapter 3 of
\cite{bell_special_2004} for a proof). Now that we have a solution for the
Legendre equation, we can make use of the following lemma to patch the solutions
such that they also become solutions of the associated Legendre equation
\eqref{kugel:eqn:associated-legendre}.

\begin{lemma} \label{kugel:thm:extend-legendre}
  If $Z_n(z)$ is a solution of the Legendre equation \eqref{kugel:eqn:legendre},
  then
  \begin{equation*}
    Z^m_n(z) = (1 - z^2)^{m/2} \frac{d^m}{dz^m}Z_n(z)
  \end{equation*}
  solves the associated Legendre equation \eqref{kugel:eqn:associated-legendre}.
  \nocite{bell_special_2004}
\end{lemma}
\begin{proof}
  See section \ref{kugel:sec:proofs:legendre}.
\end{proof}

What is happening in lemma \ref{kugel:thm:extend-legendre}, is that we are
essentially inserting a square root function in the solution in order to be able
to reach the parts of the domain near the poles at $\pm 1$ of the associated
Legendre equation, which is not possible only using power series (see sections
\ref{buch:differentialgleichungen:section:potenzreihenmethode} and
\ref{buch:differentialgleichungen:subsection:verallgemeinrt} for a discussion).
Now, since we have a solution in our domain, namely $P_n(z)$, we can insert it
in the lemma obtain the \emph{associated Legendre functions}.

\begin{definition}[Ferrers or associated Legendre functions]
  \label{kugel:def:ferrers-functions}
  The functions
  \begin{equation}
    P^m_n (z) = (1-z^2)^{\frac{m}{2}}\frac{d^{m}}{dz^{m}} P_n(z)
      = \frac{1}{2^n n!}(1-z^2)^{\frac{m}{2}}
        \frac{d^{m+n}}{dz^{m+n}}(1-z^2)^n, \quad |m|<n
  \end{equation}
  are known as Ferrers or associated Legendre functions.
\end{definition}
The constraint $|m|<n$, can be justified by considering equation
\eqref{kugel:eq:associated_leg_func}, where we differentiate $m+n$ times. We all
know that a differentiation, to be well defined, must have an order that is
greater than zero. Furthermore, it can be seen that this derivative is applied
on a polynomial of degree $2n$. As is known from Calculus 1, if you derive a
polynomial of degree $2n$ more than $2n$ times, you get zero, that would be a
trivial solution. This is the power of zero: It is almost always a (boring)
solution.

We can thus summarize these two conditions by writing:
\begin{equation*}
    \begin{rcases}
        m+n \leq 2n &\implies m \leq n \\
        m+n \geq 0  &\implies  m \geq -n
    \end{rcases} \; |m| \leq n.
\end{equation*}

\subsection{Spherical Harmonics}

Finally, we can go back to solving our boundary value problem we started in
section \ref{kugel:sec:construction:eigenvalue}. We had left off in the middle
of the separation, were we had used the Ansatz $f(\vartheta, \varphi) =
\Theta(\vartheta) \Phi(\varphi)$ to find that $\Phi(\varphi) = e^{im\varphi}$,
and we were solving for $\Theta(\vartheta)$.  As you may recall, previously we
performed the substitution $z = \cos \vartheta$. Now we can finally bring back
the solution to the associated Legendre equation $P^m_n(z)$ into the $\vartheta$
domain and combine it with $\Phi(\varphi)$ to get the full result:
\begin{equation*}
    f(\vartheta, \varphi)
      = \Theta(\vartheta)\Phi(\varphi)
      = P^m_n (\cos \vartheta) e^{im\varphi}, \quad |m|<n.
\end{equation*}
This family of functions, which recall are the solutions of the eigenvalue
problem of the surface spherical Laplacian, are the long anticipated
\emph{complex spherical harmonics}, and they are usually denoted with
$Y^m_n(\vartheta, \varphi)$.

\begin{definition}[Spherical harmonics]
  \label{kugel:def:spherical-harmonics}
  The functions
  \begin{equation*}
    Y^m_n (\vartheta, \varphi) = P^m_n(\cos \vartheta) e^{im\varphi}, \quad |m|<n
  \end{equation*}
  where $m, n \in \mathbb{Z}$ are called (unnormalized) spherical
  harmonics.
\end{definition}

\begin{figure}
  \centering
  \kugelplaceholderfig{\textwidth}{.8\paperheight}
  \caption{
    \kugeltodo{Big picture with the first few spherical harmonics.}
    \label{kugel:fig:spherical-harmonics}
  }
\end{figure}

\kugeltodo{Describe how they look like with fig.
\ref{kugel:fig:spherical-harmonics}}

\subsection{Orthogonality of $P_n$, $P^m_n$ and $Y^m_n$}

We shall now discuss an important property of the spherical harmonics: they form
an orthogonal system. And since the spherical harmonics contain the Ferrers or
associated Legendre functions, we need to discuss their orthogonality first.
But the Ferrers functions themselves depend on the Legendre polynomials, so that
will be our starting point.

\begin{lemma} For the Legendre polynomials $P_n(z)$ and $P_k(z)$ it holds that
  \label{kugel:thm:legendre-poly-ortho}
  \begin{equation*}
    \int_{-1}^1 P_n(z) P_k(z) \, dz
    = \frac{2}{2n + 1} \delta_{nk}
    = \begin{cases}
      \frac{2}{2n + 1} & \text{if } n = k, \\
      0 & \text{otherwise}.
    \end{cases}
  \end{equation*}
\end{lemma}
\begin{proof}
  To start, consider the fact that the Legendre equation
  \eqref{kugel:eqn:legendre}, of which two distinct Legendre polynomials
  $P_n(z)$ and $P_k(z)$ are a solution ($n \neq k$), can be rewritten in the
  following form:
  \begin{equation}
    \frac{d}{dz} \left[ 
      \left( 1 - z^2 \right) \frac{dZ}{dz}
    \right] + n(n+1) Z(z) = 0.
  \end{equation}
  So we rewrite the Legendre equations for $P_n(z)$ and $P_k(z)$:
  \begin{align*}
    \frac{d}{dz} \left[ 
      \left( 1 - z^2 \right) \frac{dP_n}{dz}
    \right] + n(n+1) P_n(z) &= 0,
    &
    \frac{d}{dz} \left[ 
      \left( 1 - z^2 \right) \frac{dP_k}{dz}
    \right] + k(k+1) P_k(z) &= 0,
  \end{align*}
  then we multiply the former by $P_k(z)$ and the latter by $P_n(z)$ and
  subtract the two to get
  \begin{equation*}
    \frac{d}{dz} \left[ 
      \left( 1 - z^2 \right) \frac{dP_n}{dz}
    \right] P_k(z) + n(n+1) P_n(z) P_k(z)
    -
    \frac{d}{dz} \left[ 
      \left( 1 - z^2 \right) \frac{dP_k}{dz}
    \right] P_n(z) - k(k+1) P_k(z) P_n(z) = 0.
  \end{equation*}
  By grouping terms, making order and integrating with respect to $z$ from $-1$
  to 1 we obtain
  \begin{gather}
    \int_{-1}^1 \left\{
      \frac{d}{dz} \left[ 
        \left( 1 - z^2 \right) \frac{dP_n}{dz}
      \right] P_k(z) 
      -
      \frac{d}{dz} \left[ 
        \left( 1 - z^2 \right) \frac{dP_k}{dz}
      \right] P_n(z) - k(k+1) P_k(z) P_n(z)
    \right\} \,dz \nonumber \\
    + \left[ n(n+1) - k(k+1) \right] \int_{-1}^1 P_k(z) P_n(z) \, dz = 0.
    \label{kugel:thm:legendre-poly-ortho:proof:1}
  \end{gather}
  Since by the product rule
  \begin{equation*}
    \frac{d}{dz} \left[ (1 - z^2) \frac{dP_k}{dz} P_n(z) \right]
    =
    \frac{d}{dz} \left[ (1 - z^2) \frac{dP_n}{dz} \right] P_k(z)
      + (1 - z^2) \frac{dP_n}{dz} \frac{dP_k}{dz},
  \end{equation*}
  we can simplify the first term in
  \eqref{kugel:thm:legendre-poly-ortho:proof:1} to get
  \begin{gather*}
    \int_{-1}^1 \left\{
      \frac{d}{dz} \left[ (1 - z^2) \frac{dP_k}{dz} P_n(z) \right]
        - \cancel{(1 - z^2) \frac{dP_n}{dz} \frac{dP_k}{dz}}
        - \frac{d}{dz} \left[ (1 - z^2) \frac{dP_n}{dz} P_k(z) \right]
        + \cancel{(1 - z^2) \frac{dP_k}{dz} \frac{dP_n}{dz}}
    \right\} \, dz \\
    = \int_{-1}^1 \frac{d}{dz} \left\{ (1 - z^2) \left[
      \frac{dP_k}{dz} P_n(z) - \frac{dP_n}{dz} P_k(z)
    \right] \right\} \, dz
    = (1 - z^2) \left[
      \frac{dP_k}{dz} P_n(z) - \frac{dP_n}{dz} P_k(z)
    \right] \Bigg|_{-1}^1,
  \end{gather*}
  which always equals 0 because the product contains $1 - z^2$ and the bounds
  are at $\pm 1$. Thus, of \eqref{kugel:thm:legendre-poly-ortho:proof:1} only
  the second term remains and the equation becomes
  \begin{equation*}
    \left[ n(n+1) - k(k+1) \right] \int_{-1}^1 P_k(z) P_n(z) \, dz = 0.
  \end{equation*}
  By dividing by the constant in front of the integral we have our first result.
  Now we need to show that when $n = k$ the integral equals $2 / (2n + 1)$.
  % \begin{equation*}
  % \end{equation*}
  \kugeltodo{Finish proof. Can we do it without the generating function of
  $P_n$?}
\end{proof}

In a similarly algebraically tedious fashion, we can also continue to check for
orthogonality for the Ferrers functions $P^m_n(z)$, since they are related to
$P_n(z)$ by a $m$-th derivative, and obtain the following result.

\begin{lemma} For the associated Legendre functions
  \label{kugel:thm:associated-legendre-ortho}
  \begin{equation*}
    \int_{-1}^1 P^m_n(z) P^{m}_{n'}(z) \, dz
    = \frac{2(m + n)!}{(2n + 1)(n - m)!} \delta_{nn'}
    = \begin{cases}
      \frac{2(m + n)!}{(2n + 1)(n - m)!}
        & \text{if } n = n', \\
      0 & \text{otherwise}.
    \end{cases}
  \end{equation*}
\end{lemma}
\begin{proof}
  To show that the expression equals zero when $n \neq n'$ we can perform
  exactly the same steps as in the proof of lemma
  \ref{kugel:thm:legendre-poly-ortho}, so we will not repeat them here and prove
  instead only the case when $n = n'$.
  \kugeltodo{Finish proof, or not? I have to look and decide if it is
  interesting enough.}
\end{proof}

By having the orthogonality relations of the Legendre functions we can finally
show that spherical harmonics are also orthogonal under the following inner
product:

\begin{definition}[Inner product in $S^2$]
  \label{kugel:def:inner-product-s2}
  For two complex valued functions $f(\vartheta, \varphi)$ and $g(\vartheta,
  \varphi)$ on the surface of the sphere the inner product is defined to be
  \begin{equation*}
    \langle f, g \rangle
    = \int_{0}^\pi \int_0^{2\pi}
      f(\vartheta, \varphi) \overline{g(\vartheta, \varphi)}
      \sin \vartheta \, d\varphi \, d\vartheta.
  \end{equation*}
\end{definition}


\begin{theorem} For the (unnormalized) spherical harmonics
  \label{kugel:thm:spherical-harmonics-ortho}
  \begin{align}
    \langle Y^m_n, Y^{m'}_{n'} \rangle
    &= \int_{0}^\pi \int_0^{2\pi}
      Y^m_n(\vartheta, \varphi) \overline{Y^{m'}_{n'}(\vartheta, \varphi)}
      \sin \vartheta \, d\varphi \, d\vartheta
      \label{kugel:eq:spherical-harmonics-inner-prod} \\
    &= \frac{4\pi}{2n + 1} \frac{(m + n)!}{(n - m)!} \delta_{nn'} \delta_{mm'}
    = \begin{cases}
      \frac{4\pi}{2n + 1} \frac{(m + n)!}{(n - m)!}
        & \text{if } n = n' \text{ and } m = m', \nonumber \\
      0 & \text{otherwise}.
    \end{cases}
  \end{align}
\end{theorem}
\begin{proof}
  We will begin by doing a bit of algebraic maipulaiton:
  \footnote{
    Essentially, what we just did was to turn
    \eqref{kugel:eq:spherical-harmonics-inner-prod} in this form:
    \(
      \langle Y^m_n, Y^{m'}_{n'} \rangle_{\partial S}
      = \langle P^m_n, P^{m'}_{n'} \rangle_z
      \; \langle e^{im\varphi}, e^{-im'\varphi} \rangle_\varphi
    \).
  }
  \begin{align*}
    \int_{0}^\pi \int_0^{2\pi}
      Y^m_n(\vartheta, \varphi) \overline{Y^{m'}_{n'}(\vartheta, \varphi)} 
      \sin \vartheta \, d\varphi \, d\vartheta
    &= \int_{0}^\pi \int_0^{2\pi}
      e^{im\varphi} P^m_n(\cos \vartheta)
      e^{-im'\varphi} P^{m'}_{n'}(\cos \vartheta)
      \, d\varphi \sin \vartheta \, d\vartheta 
    \\
    &= \int_{0}^\pi
      P^m_n(\cos \vartheta) P^{m'}_{n'}(\cos \vartheta) \sin \vartheta \, d\vartheta
      \int_0^{2\pi} e^{i(m - m')\varphi}
      \, d\varphi. 
  \end{align*}
  First, notice that the associated Legendre polynomials are assumed to be real,
  and are thus unaffected by the complex conjugation. Then, we can see that when
  $m = m'$ the inner integral simplifies to $\int_0^{2\pi} 1 \, d\varphi$ which
  equals $2\pi$, so in this case the expression becomes
  \begin{equation*}
    2\pi \int_{0}^\pi
      P^m_n(\cos \vartheta) P^{m'}_{n'}(\cos \vartheta)
    \sin \vartheta \, d\vartheta
    = -2\pi \int_{1}^{-1} P^m_n(z) P^{m'}_{n'}(z) \, dz
    = \frac{4\pi(m + n)!}{(2n + 1)(n - m)!} \delta_{nn'},
  \end{equation*}
  where in the second step we performed the substitution $z = \cos\vartheta$;
  $d\vartheta = \frac{d\vartheta}{dz} dz= - dz / \sin \vartheta$, and then we
  used lemma \ref{kugel:thm:associated-legendre-ortho}.  We are allowed to use
  the lemma because $m = m'$. Now we just need look at the case when $m \neq
  m'$. Fortunately this is easier: the inner integral is $\int_0^{2\pi} e^{i(m -
  m')\varphi} d\varphi$, or in other words we are integrating a complex
  exponential over the entire period, which always results in zero. Thus, we do
  not need to do anything and the proof is complete.
\end{proof}

These proofs for the various orthogonality relations were quite long and
algebraically tedious, mainly because they are ``low level'', by which we mean
that they (arguably) do not rely on very abstract theory. However, if we allow
ourselves to use the more abstract Sturm Liouville theory discussed in section
\ref{buch:integrale:subsection:sturm-liouville-problem} and chapter
\ref{chapter:sturmliouville} the proofs can become ridiculously short. Let's do
for example lemma \ref{kugel:thm:associated-legendre-ortho}.

\begin{proof}[
    Shorter proof of lemma \ref{kugel:thm:associated-legendre-ortho}
  ]
  The associated Legendre polynomials, of which we would like to prove an
  orthogonality relation, are the solution to the associated Legendre equation,
  which we can write as $LZ(z) = 0$, where
  \begin{equation*}
    L = \frac{d}{dz} (1 - z^2) \frac{d}{dz}
      + n(n+1) - \frac{m^2}{1 - z^2}.
  \end{equation*}
  Notice that $L$ is in fact a Sturm-Liouville operator of the form
  \begin{equation*}
    L = \frac{1}{w(z)} \left[
        \frac{d}{dz} p(z) \frac{d}{dz} - \lambda + q(z)
      \right],
  \end{equation*}
  if we let $w(z) = 1$, $p(z) = (1 - z^2 )$, $q(z) = -m^2 / (1 - z^2)$, and
  $\lambda = -n(n+1)$. By the theory of Sturm-Liouville operators, we know that
  the each solution of the problem $LZ(z) = 0$, namely $P^m_n(z)$, is orthogonal
  to every other solution that has a different $\lambda$. In our case $\lambda$
  varies with $n$, so $P^m_n(z)$ with different $n$'s are orthogonal to each
  other.
\end{proof}

But that was still rather informative and had a bit of explanation, which is
terrible. Real snobs, such as Wikipedia contributors, some authors and
regrettably sometimes even ourselves, would write instead:

\begin{proof}[
    Infuriatingly short proof of lemma \ref{kugel:thm:associated-legendre-ortho}
  ]
  The associated Legendre polynomials are solutions of the associated Legendre
  equation which is a Sturm-Liouville problem and are thus orthogonal to each
  other. The factor in front Kronecker delta is left as an exercise to the
  reader.
\end{proof}

Lemma \ref{kugel:thm:legendre-poly-ortho} has a very similar proof, while the
theorem \ref{kugel:thm:spherical-harmonics-ortho} for the spherical harmonics is
proved by the following argument.  The spherical harmonics are the solutions to
the eigenvalue problem $\surflaplacian f = -\lambda f$, which as discussed in
the previous section is solved using the separation Ansatz. So to prove their
orthogonality using the Sturm-Liouville theory we argue that
\begin{equation*}
  \surflaplacian = L_\vartheta L_\varphi \iff
  \surflaplacian f(\vartheta, \varphi)
    = L_\vartheta \Theta(\vartheta) L_\varphi \Phi(\varphi),
\end{equation*}
then we show that both $L_\vartheta$ and $L_\varphi$ are both Sturm-Liouville
operators (we just did the former in the shorter proof above). Since both are
Sturm-Liouville operators their combination, the surface spherical Laplacian, is
also a Sturm-Liouville operator, which then implies orthogonality.

\subsection{Normalization and the Phase Factor}

At this point we have shown that the spherical harmonics form an orthogonal
system, but in many applications we usually also want a normalization of some
kind. For example the most obvious desirable property could be for the spherical
harmonics to be ortho\emph{normal}, by which we mean that $\langle Y^m_n,
Y^{m'}_{n'} \rangle = \delta_{nn'} \delta_{mm'}$. To obtain orthonormality, we
simply add an ugly normalization factor in front of the previous definition
\ref{kugel:def:spherical-harmonics} as follows.

\begin{definition}[Orthonormal spherical harmonics]
  \label{kugel:def:spherical-harmonics-orthonormal}
  The functions
  \begin{equation*}
    Y^m_n(\vartheta, \varphi)
    = \sqrt{\frac{2n + 1}{4\pi} \frac{(n-m)!}{(m+n)!}}
      P^m_n(\cos \vartheta) e^{im\varphi}
  \end{equation*}
  where $m, n \in \mathbb{Z}$ and $|m| < n$ are the orthonormal spherical
  harmonics.
\end{definition}

Orthornomality is very useful, but it is not the only common normalization that
is found in the literature. In physics, geomagnetism to be more specific, it is
common to use the so called Schmidt semi-normalization (or sometimes also called
quasi-normalization).

\begin{definition}[Schmidt semi-normalized spherical harmonics]
  \label{kugel:def:spherical-harmonics-schmidt}
  The Schmidt semi-normalized spherical harmonics are
  \begin{equation*}
    Y^m_n(\vartheta, \varphi)
    = \sqrt{2 \frac{(n - m)!}{(n + m)!}}
      P^m_n(\cos \vartheta) e^{im\varphi}
  \end{equation*}
  where $m, n \in \mathbb{Z}$ and $|m| < n$.
\end{definition}

Additionally, there is another quirk in the literature that should be mentioned.
In some other branches of physics such as seismology and quantum mechanics there
is a so called Condon-Shortley phase factor $(-1)^m$ in front of the square root
in the definition of the normalized spherical harmonics. It is yet another
normalization that is added for physical reasons that are not very relevant to
our discussion, but we mention this potential source of confusion since many
numerical packages (such as \texttt{SHTOOLS}
\cite{markwieczorek_shtoolsshtools_2022}) offer an option to add or remove it
from the computation.

Though, for our purposes we will mostly only need the orthonormal spherical
harmonics, so from now on, unless specified otherwise when we say spherical
harmonics or write $Y^m_n$, we mean the orthonormal spherical harmonics of
definition \ref{kugel:def:spherical-harmonics-orthonormal}.

\subsection{Recurrence Relations}

The idea of this subsection is to introduce first some recursive relations
regarding the associated Legendre functions, defined in equation
\eqref{kugel:def:ferrers-functions}. Subsequently we will extend them, in order
to derive recurrence formulas for the case of Spherical Harmonic functions as
well.

\subsubsection{Associated Legendre Functions}

To start this journey, we can first write the following equations, which relate
the associated Legendre functions of different indices $m$ and $n$ recursively:
\begin{subequations}
  \begin{align}
    P^m_n(z) &= \dfrac{1}{(2n+1)x} \left[
       (m+n) P^m_{n-1}(z) + (n-m+1) P^m_{n+1}(z)
     \right] \label{kugel:eqn:rec-leg-1} \\
    P^m_n(z) &= \dfrac{\sqrt{1-z^2}}{2mz} \left[
        P^{m+1}_n(z) + [n(n+1)-m(m-1)] P^{m-1}_n(z)
      \right] \label{kugel:eqn:rec-leg-2} \\ 
    P^m_n(z) &= \dfrac{1}{(2n+1)\sqrt{1-z^2}} \left[
        P^{m+1}_{n+1}(z) - P^{m+1}_{n-1}(z)
      \right] \label{kugel:eqn:rec-leg-3} \\
    P^m_n(z) &= \dfrac{1}{(2n+1)\sqrt{1-z^2}} \left[
        (n+m)(n+m-1)P^{m-1}_{n-1}(z) - (n-m+1)(n-m+2)P^{m-1}_{n+1}(z)
      \right] \label{kugel:eqn:rec-leg-4}
  \end{align}
\end{subequations}

Much of the effort will be proving this bunch of equalities. Then, in the second
part, where we will derive the recursion equations for
$Y^m_n(\vartheta,\varphi)$, we will basically reuse the ones presented above.
Maybe it is worth mentioning at least one use case for these relations: In some
software implementations (that include lighting computations in computer
graphics, antenna modelling software, 3D modelling in medical applications,
etc.) they are widely used, as they lead to better numerical accuracy and
computational cost lower by a factor of six \cite{davari_new_2013}.

\begin{proof}[Proof of \eqref{kugel:eqn:rec-leg-1}]
  This is the relation that links the associated Legendre functions with the
  same $m$ index but different $n$. Using theorem
  \ref{buch:orthogonal:satz:drei-term-rekursion}, we have 
  \begin{equation*}
    (n+1)P_{n+1}(z)-(2n+1)zP_n(z)+nP_{n-1}(z)=0,
  \end{equation*}
  that can be differentiated $m$ times, obtaining
  \begin{equation}
    \label{kugel:eq:rec_1}
    (n+1)\frac{d^mP_{n+1}}{dz^m}-(2n+1) \left[
      z \frac{d^m P_n}{dz^m}+ m\frac{d^{m-1}P_{n-1}}{dz^{m-1}}
    \right] + n\frac{d^m P_{n-1}}{dz^m} = 0.
  \end{equation}
  To continue this derivation, we need the following relation:
  \begin{equation}
    \label{kugel:eq:rec_2}
    \frac{dP_{n+1}}{dz} - \frac{dP_{n-1}}{dz} = (2n+1)P_n.
  \end{equation}
  The latter will not be derived, because it suffices to use the definition of
  the Legendre Polynomials $P_n(z)$ to check it.  We can now differentiate $m-1$
  times the just presented equation \eqref{kugel:eq:rec_2}, that so that is
  becomes
  \begin{equation}
    \label{kugel:eq:rec_3}
    \frac{d^mP_{n+1}}{dz^m} - \frac{d^mP_{n-1}}{dz^m}
    = (2n+1)\frac{d^{m-1}P_n}{dz^{m-1}}.
  \end{equation}
  Then, using \eqref{kugel:eq:rec_3} in \eqref{kugel:eq:rec_1}, we will
  have
  \begin{equation}
    \label{kugel:eq:rec_4}
    (n+1)\frac{d^mP_{n+1}}{dz^m}
      - (2n+1)\frac{d^mP_{n+1}}{dz^m}
      - m\left[\frac{d^m P_{n+1}}{dz^m}
      + \frac{d^{m}P_{n-1}}{dz^m}\right]
      + n\frac{d^m P_{n-1}}{dz^m}=0.
  \end{equation}
  Finally, multiplying both sides by $(1-z^2)^{\frac{m}{2}}$ and simplifying the
  expression, we can rewrite \eqref{kugel:eq:rec_4} in terms of $P^m_n(z)$,
  namely
  \begin{equation*}
    (n+1-m)P^m_{n+1}(z)-(2n+1)zP^m_n(z)+(m+n)P^m_{n-1}(z)=0,
  \end{equation*}
  that rearranged, will be
  \begin{equation*}
    (2n+1) z P^m_n(z)= (m+n) P^m_{n-1}(z) + (n-m+1) P^m_{n+1}(z).
    \qedhere
  \end{equation*}
\end{proof}

\begin{proof}[Proof of \eqref{kugel:eqn:rec-leg-2}]
  This relation, unlike the previous one, link three expression with the same
  $n$ index but different $m$. In the proof of Lemma
  \ref{kugel:thm:extend-legendre}, at some point we ran into this expression.
  \begin{equation*}
    (1-z^2)\frac{d^{m+2}P_n}{dz^{m+2}}
    - 2(m+1)z \frac{d^{m+1}P_n}{dz^{m+1}}
    + [n(n+1)-m(m+1)]\frac{d^mP_n}{dz^m} = 0,
  \end{equation*}
  which, if multiplied by $(1-z^2)^{\frac{m}{2}}$, becomes
  \begin{equation*}
    (1-z^2)^{\frac{m}{2}+1}\frac{d^{m+2}P_n}{dz^{m+2}}
    - 2(m+1)z (1-z^2)^{\frac{m}{2}}\frac{d^{m+1}P_n}{dz^{m+1}}
    + [n(n+1)-m(m+1)](1-z^2)^{\frac{m}{2}}\frac{d^mP_n}{dz^m} = 0.
  \end{equation*}
  Therefore, as before, expressing it in terms of $P^m_n(z)$:
  \begin{equation*}
    P^{m+2}_n(z) - \frac{2(m+1)z}{\sqrt{1-z^2}}P^{m+1}_n(z)
    + [n(n+1)-m(m+1)]P^m_n(z)=0.
  \end{equation*}
  Further, we can adjust the indices and terms, obtaining
  \begin{equation*}
    \frac{2mz}{\sqrt{(1-z^2)}} P^m_n(z)
    = P^{m+1}_n(z) + [n(n+1)-m(m-1)] P^{m-1}_n(z).
    \qedhere
  \end{equation*}
\end{proof}

\begin{proof}[Proof of \eqref{kugel:eqn:rec-leg-3}]
  To derive this expression, we can multiply \eqref{kugel:eq:rec_3} by
  $(1-z^2)^{\frac{m}{2}}$ and, as always, we could express it in terms of
  $P^m_n(z)$:
  \begin{equation*}
    P^m_{n+1}(z) - P^m_{n-1}(z) = (2n+1)\sqrt{1-z^2}P^{m-1}_n(z).
  \end{equation*}
  After that we can divide by $2n+1$ resulting in
  \begin{equation}\label{kugel:eq:helper}
    \frac{1}{2n+1}[P^m_{n+1}(z) - P^m_{n-1}(z)] = \sqrt{1-z^2}P^{m-1}_n(z).
  \end{equation}
  To conclude, we arrange the indices differently:
  \begin{equation*}
    \sqrt{1-z^2}P^{m}_n(z)=\frac{1}{2n+1}[P^{m+1}_{n+1}(z) - P^{m+1}_{n-1}(z)].
    \qedhere
  \end{equation*}
\end{proof}

\begin{proof}[Proof of \eqref{kugel:eqn:rec-leg-4}]
  For this proof we can rely on \eqref{kugel:eqn:rec-leg-1}, and therefore
  rewrite \eqref{kugel:eqn:rec-leg-2} as 
  \begin{equation*}
    \frac{2m}{(2n+1)\sqrt{1-z^2}} \left[
      (m+n)P^m_{n-1}(z) + (n-m+1)P^m_{n+1}(z)
    \right] = P^{m+1}_n(z) + [ n(n+1)-m(m-1) ]P^{m-1}_n(z).
  \end{equation*}
  Rewriting then $P^{m-1}_n(z)$ using \eqref{kugel:eq:helper}, we will have
  \begin{align*}
    \frac{2m}{(2n+1)\sqrt{1-z^2}}
      &\left[ (m+n)P^m_{n-1}(z) + (n-m+1)P^m_{n+1}(z) \right] = P^{m+1}_n(z) \\
      &+ \frac{n(n+1)-m(m-1)}{(2n+1)\sqrt{1-z^2}} \left[
          P^m_{n+1}(z)-P^m_{n-1}(z)
        \right].
  \end{align*}
  The last equation, after some algebraic rearrangements, it is easy to show
  that it is equivalent to
  \begin{equation*}
    \sqrt{1-z^2} P^m_n(z) = \dfrac{1}{2n+1} \left[
      (n+m)(n+m-1)P^{m-1}_{n-1}(z) - (n-m+1)(n-m+2)P^{m-1}_{n+1}(z)
    \right].
    \qedhere
  \end{equation*}
\end{proof}

\subsubsection{Spherical Harmonics}

The goal of this subsection's part is to apply the recurrence relations of the
$P^m_n(z)$ functions to the Spherical Harmonics.  With some little adjustments
we will be able to have recursion equations for them too. As previously written
most of the work is already done. Now it is only a matter of minor mathematical
operations/rearrangements. We can start by listing all of them:
\begin{subequations}
  \begin{align}
  Y^m_n(\vartheta, \varphi) &= \dfrac{1}{(2n+1)\cos \vartheta} \left[
      (m+n)Y^m_{n-1}(\vartheta, \varphi)
      + (m-n+1)Y^m_{n+1}(\vartheta, \varphi)
    \right] \label{kugel:eqn:rec-sph-harm-1} \\
  Y^m_n(\vartheta, \varphi) &= \dfrac{\tan \vartheta}{2m}\left[
      Y^{m+1}_n(\vartheta, \varphi)e^{-i\varphi}
      + [n(n+1)-m(m-1)]Y^{m-1}_n(\vartheta, \varphi)e^{i\varphi}
    \right] \label{kugel:eqn:rec-sph-harm-2} \\
  Y^m_n(\vartheta, \varphi) &= \dfrac{e^{-i\varphi}}{ (2n+1)\sin \vartheta}
    \left[
      Y^{m+1}_{n+1}(\vartheta, \varphi)
      - Y^{m+1}_{n-1}(\vartheta, \varphi)
    \right] \label{kugel:eqn:rec-sph-harm-3} \\
  Y^m_n(\vartheta, \varphi) &= \dfrac{e^{i\varphi}}{(2n+1)\sin \vartheta}
    \left[
      (n+m)(n+m-1)Y^{m-1}_{n-1}(\vartheta, \varphi)
      - (n-m+1)(n-m+2)Y^{m-1}_{n+1}(\vartheta, \varphi)
    \right] \label{kugel:eqn:rec-sph-harm-4} 
  \end{align}
\end{subequations}

\begin{proof}[Proof of \eqref{kugel:eqn:rec-sph-harm-1}]
  We can multiply both sides of equality in \eqref{kugel:eqn:rec-leg-1} by $e^{im
  \varphi}$ and perform the substitution $z=\cos \vartheta$. After a few simple
  algebraic steps, we will obtain the relation we are looking for.
\end{proof}

\begin{proof}[Proof of \eqref{kugel:eqn:rec-sph-harm-2}]
  In this proof, as before, we can perform the substitution $z=\cos \vartheta$,
  and notice that $\sqrt{1-z^2}=\sin \vartheta$, hence, the relation in
  \eqref{kugel:eqn:rec-leg-2} will be
  \begin{equation*}
    \frac{2m \cos \vartheta}{\sin \vartheta} P^m_n(\cos \vartheta) 
    = P^{m+1}_n(\cos \vartheta) + [n(n+1)-m(m-1)]P^{m-1}_n P^m_n(\cos \vartheta).
  \end{equation*}
  The latter, multiplied by $e^{im\varphi}$, becomes
  \begin{align*}
    \frac{2m \cos \vartheta}{\sin \vartheta} P^m_n(\cos \vartheta)e^{im\varphi}
      &= P^{m+1}_n(\cos \vartheta)e^{im\varphi}
       + [n(n+1)-m(m-1)]P^{m-1}_n P^m_n(\cos \vartheta)e^{im\varphi} \\
      &= P^{m+1}_n(\cos \vartheta)e^{i(m+1)\varphi}e^{-i\varphi}
       + [n(n+1)-m(m-1)]P^{m-1}_n (\cos \vartheta)e^{i(m-1)\varphi}e^{i\varphi} \\
      &= Y^{m+1}_n(\vartheta, \varphi)e^{-i\varphi}
       + [n(n+1)-m(m-1)]Y^{m-1}_n(\vartheta, \varphi)e^{i\varphi}.
  \end{align*}
  Finally, after some ``cleaning''
  \begin{equation*}
    Y^m_n(\vartheta, \varphi) = \frac{\tan \vartheta}{2m} \left[
      Y^{m+1}_n(\vartheta, \varphi)e^{-i\varphi}
      + [n(n+1)-m(m-1)]Y^{m-1}_n(\vartheta, \varphi)e^{i\varphi}
    \right]
    \qedhere
  \end{equation*}
\end{proof}

\begin{proof}[Proof of \eqref{kugel:eqn:rec-sph-harm-3}]
  Now we can consider \eqref{kugel:eqn:rec-leg-3}, and multiply it by
  $e^{im\varphi}$. After the usual substitution $z=\cos \vartheta$, we have 
  \begin{align*}
    \sin \vartheta P^m_n(\cos \vartheta)e^{im\varphi}
      &= \dfrac{e^{im\varphi}}{2n+1}\left[
          P^{m+1}_{n+1}(\cos \vartheta)
          - P^{m+1}_{n-1}(\cos \vartheta)
        \right] \\
      &= \dfrac{e^{-i\varphi}}{2n+1}\left[
          P^{m+1}_{n+1}(\cos \vartheta)e^{i(m+1)\varphi}
          - P^{m+1}_{n-1}(\cos \vartheta)e^{i(m+1)\varphi}
        \right].
  \end{align*}
  A few manipulations later, we will obtain
  \begin{equation*}
    Y^m_n(\vartheta, \varphi) = \frac{e^{-i\varphi}}{(2n+1)\sin \vartheta}
      \left[
        Y^{m+1}_{n+1}(\vartheta, \varphi)-Y^{m+1}_{n-1}(\vartheta, \varphi)
      \right].
    \qedhere
  \end{equation*}
\end{proof}

\begin{proof}[Proof of \eqref{kugel:eqn:rec-sph-harm-4}]
  This proof is very similar to the previous one. We just have to perform the
  substitution $z = \cos \vartheta$, as always. Secondly we can multiply the
  right side by $e^{im\varphi}$ and the left one too but in a different form,
  namely $e^{im\varphi}=e^{i(m-1)\varphi}e^{i\varphi}$. Then it is only a
  question of recalling the definition of $Y^m_n(\vartheta, \varphi)$.
\end{proof}

\section{Series Expansions in $L^2(S^2)$}

We have now reach a point where we have all the tools that are necessary to
build something truly amazing: a general series expansion formula for function
on the surface of the sphere.  Before starting we want to recall the definition
of the inner product on the spherical surface of definition
\ref{kugel:def:inner-product-s2}
\begin{equation*}
  \langle f, g \rangle
  = \int_{0}^\pi \int_0^{2\pi}
    f(\vartheta, \varphi) \overline{g(\vartheta, \varphi)}
    \sin \vartheta \, d\varphi \, d\vartheta.
\end{equation*}
To be a bit technical we can say that the set of spherical harmonic functions,
together with the inner product just showed, form something that we call Hilbert
Space\footnote{For more details about Hilbert space you can take a look in
section \ref{kugel:sec:preliminaries}}.  This function space is defined over the
space of ``well-behaved'' \footnote{The definitions of ``well-behaved'' is
pretty ambiguous, even for mathematicians.  It depends basically on the context.
You can summarize it by saying: functions for which the theory we are considering
(Fourier theorem) is always true. In our case we can say that well-behaved
functions are functions that follow some convergence constraints (pointwise,
uniform, absolute, ...) that we don't want to consider further anyway.}
functions.  We can say that the theory we are about to show can be applied on
all twice differentiable complex valued functions, to be more concise: complex
valued $L^2$ functions $S^2 \to \mathbb{C}$.

All this jargon is not really necessary for the practical applications of us
mere mortals, namely physicists and engineers.  From now on we will therefore
assume that the functions we will dealing with fulfill these ``minor''
conditions.

The insiders could turn up their nose, but we don't want to dwell too much on
the concept of Hilbert space, convergence, metric, well-behaved functions etc.
We simply think that this rigorousness could be at the expense of the
possibility to appreciate the beauty and elegance of this theory.  Furthermore,
the risk of writing 300+ pages to prove that $1+1=2$\cite{principia-mathematica}
is just around the corner (we apologize in advance to Mr. Whitehead and Mr.
Russel for using their effort with a negative connotation).

Despite all, if you desire having definitions a bit more rigorous (as rigorous
as two engineers can be), you could take a look at the chapter \ref{}.

\subsection{Spherical Harmonics Series}

To talk about a \emph{series expansion} we first need a series, so we shall
build one using the spherical harmonics.

\begin{definition}[Spherical harmonic series]
  \label{kugel:def:spherical-harmonics-series}
  \begin{equation}
    f(\vartheta, \varphi) 
    = \sum_{n=0}^\infty \sum_{m =-n}^n
      c_{m,n} Y^m_n(\vartheta, \varphi).
      \label{kugel:eqn:spherical-harmonics-series}
  \end{equation}
\end{definition}

With this definition we are basically saying that any function defined on the
spherical surface can be represented as a linear combination of spherical
harmonics.  Does equation \eqref{kugel:definition:spherical-harmonics-series}
sound familiar? Well that is perfectly normal, since this is analog to the
classical Fourier theory.  In the latter is stated that ``any'' $T$-periodic
function $f(x)$, on any interval $[x_0-T/2,x_0+T/2]$, can be represented as a
linear combination of complex exponentials. More compactly:
\begin{equation*}
  f(x) = \sum_{n \in \mathbb{Z}} c_n e^{i \omega_0 x},
    \quad \omega_0=\frac{2\pi}{T}
\end{equation*}
In the case of definition \ref{kugel:def:spherical-harmonics-series} the
kernels, instead of $e^{i\omega_0x}$, have become $Y^m_n$. In addition, the sum
is now over the two indices $m$ and $n$.

\begin{lemma}[Spherical harmonic coefficients]
  \label{kugel:thm:spherical-harmonic-coefficient}
  \begin{equation*}
    c_{m,n} 
    = \langle f, Y^m_n \rangle_{\partial S}
    = \int_0^\pi \int_0^{2\pi}
      f(\vartheta,\varphi) \overline{Y^m_n(\vartheta,\varphi)}
      \sin\vartheta \,d\varphi\,d\vartheta
  \end{equation*}
  \kugeltodo{Would be better as a definition? I don't get what is being proved.}
\end{lemma}

\begin{proof}
  To develop this proof we will take advantage of the orthogonality property of
  the Spherical Harmonics. We can start and finish by applying the inner product
  on both sides of \eqref{kugel:eqn:spherical-harmonics-series}:
  \begin{align*}
    \langle f, Y^{m}_{n} \rangle_{\partial S}
    &= \left\langle \sum_{n'=0}^\infty \sum_{m' =-n'}^{n'}
      c_{m',n'} Y^{m'}_{n'} \right\rangle_{\partial S}  \\
    &= \sum_{n'=0}^\infty \sum_{m' =-n'}^{n'}
      \langle c_{m',n'} Y^{m'}_{n'}, Y^{m}_{n} \rangle_{\partial S} \\
    &= \sum_{n'=0}^\infty \sum_{m' =-n'}^{n'} c_{m',n'}
      \langle Y^{m'}_{n'}, Y^{m}_{n} \rangle_{\partial S} = c_{m,n}
  \end{align*}
\end{proof}

Thanks to Lemma \ref{kugel:thm:spherical-harmonic-coefficient} we can now
calculate the series expansion defined in
\ref{kugel:def:spherical-harmonics-series}. It can be shown that, for the famous
``well-behaved functions'' $f(\vartheta, \varphi)$ mentioned before, the
following theorem is true.  The connection to Theorem
\ref{kugel:thm:fourier-theorem} is pretty obvious.

\begin{theorem}[Fourier Theorem on $\partial S$]
  \label{fourier-theorem-spherical-surface}
  \begin{equation*}
    \lim_{N \to \infty}
    \int_0^\pi \int_0^{2\pi} \left\| f(\vartheta,\varphi) - \sum_{n=0}^N\sum_{m=-n}^n c_{m,n} Y^m_n(\vartheta,\varphi)
    \right\|_2 \sin\vartheta \,d\varphi\,d\vartheta  = 0
  \end{equation*}
\end{theorem}

\subsection{Spectrum}

\begin{figure}
  \centering
  \kugelplaceholderfig{.8\textwidth}{5cm}
  \caption{\kugeltodo{Rectangular signal and his spectrum.}}
  \label{kugel:fig:1d-fourier}
\end{figure}

In the case of the classical one-dimensional Fourier theory, we call \emph{Spectrum} the relation between the fourier coefficients $c_n$ and the multiple 
of the fundamental frequency $2\pi/T$, namely $n 2\pi/T$. In the most general case $c_n$ are complex numbers, so we divide the concept of spectrum in 
\emph{Amplitude Spectrum} and \emph{Phase Spectrum}. In fig.\ref{kugel:fig:1d-fourier} a function $f(x)$ is presented along with the amplitude spectrum.

\begin{figure}
  \centering
  \kugelplaceholderfig{.8\textwidth}{7cm}
  \caption{\kugeltodo{Confront between image reconstructed only with phase and one only with amplitued}}
  \label{kugel:fig:phase&amplitude-2d-fourier}
\end{figure}

The thing that is easiest for us humans to visualize and understand is often the Amplitude Spectrum.
This is a huge limitation, since for example in Image Processing can be showed in a nice way that much more information is contained in the phase part (see fig.\ref{kugel:fig:phase-2d-fourier}).

\begin{figure}
  \centering
  \kugelplaceholderfig{.8\textwidth}{9cm}
  \caption{\kugeltodo{fig that show fourier style reconstruction on sphere (with increasing index)}}
  \label{kugel:fig:fourier-on-sphere-increasing-index}
\end{figure}

The same logic can be extended to the spherical harmonic coefficients $c_{m,n}$. In fig.\ref{kugel:fig:fourier-on-sphere-increasing-index} you can see the same concept as in fig.\ref{kugel:fig:1d-fourier} 
but with a spherical function $f(\vartheta, \varphi)$.

\subsection{Energy of a function $f(\vartheta, \varpi)$}

\begin{lemma}[Energy of a spherical function (\emph{Parseval's theorem})]
  \begin{equation*}
    \int_0^{2\pi}\int_0^\pi |f(\vartheta, \varphi)|^2  \sin\vartheta \, d\varphi \, d\varphi = \sum_{n=0}^\infty \frac{1}{2n+1} \sum_{m=-n}^n |c_{m,n}|^2.
  \end{equation*}
\end{lemma}
\begin{proof}
\end{proof}


\if 0
\begin{theorem}[Spherical harmonic series expansion]
  A complex valued piecewise continuous function on the surface of the sphere
  $f: S^2 \to \mathbb{C}$, $f \in L^2$ has a series expansion
  \begin{equation*}
    \hat{f}(\vartheta, \varphi) 
    = \sum_{n \in \mathbb{Z}} \sum_{m \in \mathbb{Z}}
      c_{m,n} Y^m_n(\vartheta, \varphi),
  \end{equation*}
  where $c_{m,n} = \langle f, Y^m_n \rangle$, that converges everywhere uniformly
  on $f$, i.e. $\|f(\vartheta, \varphi) - \hat{f}(\vartheta, \varphi)\|_2 = 0$.
\end{theorem}
\begin{proof}
  Sadly, this proof is beyond the scope of this text.
\end{proof}
\fi

\subsection{Visualization}