1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
#
# pk.m -- Punkte und Kanten für sphärisches Dreieck
#
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
A = [ 1, 8 ];
B = [ -3, 3 ];
C = [ 4, 4 ];
P = [ 0, 0 ];
global fn;
fn = fopen("dreieckdata.tex", "w");
fprintf(fn, "\\coordinate (P) at (%.4f,%.4f);\n", P(1,1), P(1,2));
fprintf(fn, "\\coordinate (A) at (%.4f,%.4f);\n", A(1,1), A(1,2));
fprintf(fn, "\\coordinate (B) at (%.4f,%.4f);\n", B(1,1), B(1,2));
fprintf(fn, "\\coordinate (C) at (%.4f,%.4f);\n", C(1,1), C(1,2));
function retval = seite(A, B, l, nameA, nameB)
global fn;
d = fliplr(B - A);
d(1, 2) = -d(1, 2);
# Zentrum
C = 0.5 * (A + B) + l * d;
# Radius:
r = hypot(C(1,1)-A(1,1), C(1,2)-A(1,2))
# Winkel von
winkelvon = atan2(A(1,2)-C(1,2),A(1,1)-C(1,1));
# Winkel bis
winkelbis = atan2(B(1,2)-C(1,2),B(1,1)-C(1,1));
if (abs(winkelvon - winkelbis) > pi)
if (winkelbis < winkelvon)
winkelbis = winkelbis + 2 * pi
else
winkelvon = winkelvon + 2 * pi
end
end
# Kurve
fprintf(fn, "\\def\\kante%s%s{(%.4f,%.4f) arc (%.5f:%.5f:%.4f)}\n",
nameA, nameB,
A(1,1), A(1,2), winkelvon * 180 / pi, winkelbis * 180 / pi, r);
fprintf(fn, "\\def\\kante%s%s{(%.4f,%.4f) arc (%.5f:%.5f:%.4f)}\n",
nameB, nameA,
B(1,1), B(1,2), winkelbis * 180 / pi, winkelvon * 180 / pi, r);
endfunction
seite(A, B, -1, "A", "B");
seite(A, C, 1, "A", "C");
seite(A, P, -1, "A", "P");
seite(B, C, -2, "B", "C");
seite(B, P, -1, "B", "P");
seite(C, P, 2, "C", "P");
fclose(fn);
|