aboutsummaryrefslogtreecommitdiffstats
path: root/projection.c
diff options
context:
space:
mode:
authorPatrick Roth <roth@stettbacher.ch>2021-07-07 10:14:14 +0200
committerPatrick Roth <roth@stettbacher.ch>2021-07-07 10:14:14 +0200
commit8d975a4b14f7b3fefa3577bc3cfda53e173d2dc0 (patch)
tree0ca6d3f523d927b0b727f9a435b3d33ddb38fba4 /projection.c
parentversion 1.1.0 added (diff)
parentChangeLog modified (diff)
downloado3000-color-pipe-8d975a4b14f7b3fefa3577bc3cfda53e173d2dc0.tar.gz
o3000-color-pipe-8d975a4b14f7b3fefa3577bc3cfda53e173d2dc0.zip
Merge branch 'add-projection-matrix' into 'master'
Add projection matrix See merge request o-3000/color-pipe!2
Diffstat (limited to 'projection.c')
-rw-r--r--projection.c272
1 files changed, 272 insertions, 0 deletions
diff --git a/projection.c b/projection.c
new file mode 100644
index 0000000..c3742af
--- /dev/null
+++ b/projection.c
@@ -0,0 +1,272 @@
+/**
+* @file projection.c
+* @brief projective transformation
+* @author Patrick Roth - roth@stettbacher.ch
+* @copyright Stettbacher Signal Processing AG
+*
+* @remarks
+*
+* <PRE>
+* This library is free software; you can redistribute it and/or
+* modify it under the terms of the GNU Lesser General Public
+* License as published by the Free Software Foundation; either
+* version 2.1 of the License, or (at your option) any later version.
+*
+* This library is distributed in the hope that it will be useful,
+* but WITHOUT ANY WARRANTY; without even the implied warranty of
+* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+* Lesser General Public License for more details.
+*
+* You should have received a copy of the GNU Lesser General Public
+* License along with this library; if not, write to the Free Software
+* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+* </PRE>
+*
+*/
+
+#include <stdio.h>
+#include <string.h>
+#include <math.h>
+
+#include "color_pipe_private.h"
+
+
+/**
+ * Pixel value interpolation of RGB image (8 bit per color channel).
+ * If a pixel coordinate with a fraction part is of interest, do interpolate the correct value from their neighbor's pixel.
+ *
+ * E. g. the pixel coordinate x/y = 1.8/2.3 gives the following weights:
+ * +------+------+
+ * | | |
+ * | 14% | 56% | 14% = 20%*70%, 56% = 80%*70%
+ * | | |
+ * +------+------+
+ * | | |
+ * | 6% | 24% | 6% = 20%*30%, 24% = 80%*30%
+ * | | |
+ * +------+------+
+ *
+ * The weights are applied to the neighors and the resulting pixel value is saved at the given location.
+ *
+ * NOTE
+ * The input and output image must have the same pixel size.
+ *
+ * @param img_out On return: image with interpolated values
+ * @param x saved interpolated pixel value at this x-coordinate
+ * @param y saved interpolated pixel value at this y-coordinate
+ * @param height image height of input and output image in number of pixels
+ * @param width image width of input and output image in number of pixels
+ * @param img_in input image to interpolate pixel values
+ * @param coord_x x-coordinate to interpolate
+ * @param coord_y y-coordinate to interpolate
+ * @param scale_fact coordinates are scaled by this factor
+ */
+static void interpolate_rgb8_scalar(uint8_t *img_out, const int x, const int y, const int height, const int width,
+ const uint8_t *img_in, const int coord_x, const int coord_y, const int scale_fact)
+#include "alg_interpolate_rgb_scalar.h"
+
+
+/**
+ * Pixel value interpolation of RGB image (16 bit per color channel).
+ * If a pixel coordinate with a fraction part is of interest, do interpolate the correct value from their neighbor's pixel.
+ *
+ * E. g. the pixel coordinate x/y = 1.8/2.3 gives the following weights:
+ * +------+------+
+ * | | |
+ * | 14% | 56% | 14% = 20%*70%, 56% = 80%*70%
+ * | | |
+ * +------+------+
+ * | | |
+ * | 6% | 24% | 6% = 20%*30%, 24% = 80%*30%
+ * | | |
+ * +------+------+
+ *
+ * The weights are applied to the neighors and the resulting pixel value is saved at the given location.
+ *
+ * NOTE
+ * The input and output image must have the same pixel size.
+ *
+ * @param img_out On return: image with interpolated values
+ * @param x saved interpolated pixel value at this x-coordinate
+ * @param y saved interpolated pixel value at this y-coordinate
+ * @param height image height of input and output image in number of pixels
+ * @param width image width of input and output image in number of pixels
+ * @param img_in input image to interpolate pixel values
+ * @param coord_x x-coordinate to interpolate
+ * @param coord_y y-coordinate to interpolate
+ * @param scale_fact coordinates are scaled by this factor
+ */
+static void interpolate_rgb16_scalar(uint16_t *img_out, const int x, const int y, const int height, const int width,
+ const uint16_t *img_in, const int coord_x, const int coord_y, const int scale_fact)
+#include "alg_interpolate_rgb_scalar.h"
+
+
+/**
+ * Pixel value interpolation of monochrome image (8 bit per pixel).
+ * If a pixel coordinate with a fraction part is of interest, do interpolate the correct value from their neighbor's pixel.
+ *
+ * E. g. the pixel coordinate x/y = 1.8/2.3 gives the following weights:
+ * +------+------+
+ * | | |
+ * | 14% | 56% | 14% = 20%*70%, 56% = 80%*70%
+ * | | |
+ * +------+------+
+ * | | |
+ * | 6% | 24% | 6% = 20%*30%, 24% = 80%*30%
+ * | | |
+ * +------+------+
+ *
+ * The weights are applied to the neighors and the resulting pixel value is saved at the given location.
+ *
+ * NOTE
+ * The input and output image must have the same pixel size.
+ *
+ * @param img_out On return: image with interpolated values
+ * @param x saved interpolated pixel value at this x-coordinate
+ * @param y saved interpolated pixel value at this y-coordinate
+ * @param height image height of input and output image in number of pixels
+ * @param width image width of input and output image in number of pixels
+ * @param img_in input image to interpolate pixel values
+ * @param coord_x x-coordinate to interpolate
+ * @param coord_y y-coordinate to interpolate
+ * @param scale_fact coordinates are scaled by this factor
+ */
+static void interpolate_mono8_scalar(uint8_t *img_out, const int x, const int y, const int height, const int width,
+ const uint8_t *img_in, const int coord_x, const int coord_y, const int scale_fact)
+#include "alg_interpolate_mono_scalar.h"
+
+
+/**
+ * Pixel value interpolation of monochrome image (16 bit per pixel).
+ * If a pixel coordinate with a fraction part is of interest, do interpolate the correct value from their neighbor's pixel.
+ *
+ * E. g. the pixel coordinate x/y = 1.8/2.3 gives the following weights:
+ * +------+------+
+ * | | |
+ * | 14% | 56% | 14% = 20%*70%, 56% = 80%*70%
+ * | | |
+ * +------+------+
+ * | | |
+ * | 6% | 24% | 6% = 20%*30%, 24% = 80%*30%
+ * | | |
+ * +------+------+
+ *
+ * The weights are applied to the neighors and the resulting pixel value is saved at the given location.
+ *
+ * NOTE
+ * The input and output image must have the same pixel size.
+ *
+ * @param img_out On return: image with interpolated values
+ * @param x saved interpolated pixel value at this x-coordinate
+ * @param y saved interpolated pixel value at this y-coordinate
+ * @param height image height of input and output image in number of pixels
+ * @param width image width of input and output image in number of pixels
+ * @param img_in input image to interpolate pixel values
+ * @param coord_x x-coordinate to interpolate
+ * @param coord_y y-coordinate to interpolate
+ * @param scale_fact coordinates are scaled by this factor
+ */
+static void interpolate_mono16_scalar(uint16_t *img_out, const int x, const int y, const int height, const int width,
+ const uint16_t *img_in, const int coord_x, const int coord_y, const int scale_fact)
+#include "alg_interpolate_mono_scalar.h"
+
+
+/**
+ * Apply projective transformaion.
+ *
+ * @param data projective transformation data
+ */
+static void apply_projection(struct projection_data_t *data) {
+ int x, y, x_corr, y_corr;
+ const int width = data->width;
+ const int height = data->height;
+ int bit_channel = data->bit_channel;
+ struct coord_t *map = data->map;
+ void *img_calib = data->img_out;
+ void *img_uncalib = data->img_in;
+ const int scale_fact = data->map_scale_fact;
+ const int is_color = data->is_color;
+
+ for(y = 0; y < height; y++) {
+ for(x = 0; x < width; x++) {
+ x_corr = map->x;
+ y_corr = map->y;
+ map++;
+
+ if(bit_channel <= 8) {
+ if(is_color) {
+ interpolate_rgb8_scalar(img_calib, x, y, height, width, img_uncalib, x_corr, y_corr, scale_fact);
+ }
+ else {
+ interpolate_mono8_scalar(img_calib, x, y, height, width, img_uncalib, x_corr, y_corr, scale_fact);
+ }
+ }
+ else if(bit_channel <= 16) {
+ if(is_color) {
+ interpolate_rgb16_scalar(img_calib, x, y, height, width, img_uncalib, x_corr, y_corr, scale_fact);
+ }
+ else {
+ interpolate_mono16_scalar(img_calib, x, y, height, width, img_uncalib, x_corr, y_corr, scale_fact);
+ }
+ }
+ }
+ }
+}
+
+
+/**
+ * Initialize perspective transformation map.
+ *
+ * @param data projective transformation data
+ */
+static void init_map(struct projection_data_t *data) {
+ int x, y;
+ struct coord_t *map = data->map;
+ const int scale_fact = (1 << (data->map_scale_fact));
+ const int width = data->width;
+ const int height = data->height;
+ float x_corr, y_corr;
+ const float c00 = data->c_inv[0][0];
+ const float c01 = data->c_inv[0][1];
+ const float c02 = data->c_inv[0][2];
+ const float c10 = data->c_inv[1][0];
+ const float c11 = data->c_inv[1][1];
+ const float c12 = data->c_inv[1][2];
+ const float c20 = data->c_inv[2][0];
+ const float c21 = data->c_inv[2][1];
+ const float c22 = data->c_inv[2][2];
+
+ for(y = 0; y < height; y++) {
+ for(x = 0; x < width; x++) {
+ x_corr = (c00*x+c01*y+c02)/(c20*x+c21*y+c22);
+ y_corr = (c10*x+c11*y+c12)/(c20*x+c21*y+c22);
+
+ // apply scaling factor
+ map->x = (int)roundf(x_corr*scale_fact);
+ map->y = (int)roundf(y_corr*scale_fact);
+ map++;
+ }
+ }
+}
+
+
+/**
+ * Apply projective transformation.
+ *
+ * @param data required data for projective transformation
+ * @return 0 on success otherwise -1
+ */
+int projection(struct projection_data_t *data) {
+
+ /*
+ * Create projective transformation map if needed.
+ */
+ if(data->map_init == 0) {
+ data->map_scale_fact = 6; // scale by 9 means 2^6 = 64
+ init_map(data);
+ data->map_init = 1;
+ }
+
+ apply_projection(data);
+ return 0;
+}