aboutsummaryrefslogtreecommitdiffstats
path: root/trapcorr.c
blob: aef24112918d08f1b19d3f94a22425fa30a33850 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
/**
* @file			trapcorr.c
* @brief		isosceles trapeze correction algorithm
* @author		Patrick Roth - roth@stettbacher.ch
* @copyright	Stettbacher Signal Processing AG
* 
* @remarks
*
* <PRE>
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
* </PRE>
*
*/

#include <stdio.h>
#include <string.h>
#include <math.h>

#include "color_pipe_private.h"



/**
 * Pixel value interpolation of RGB image (8 bit per color channel).
 * If a pixel coordinate with a fraction part is of interest, do interpolate the correct value from their neighbor's pixel.
 * 
 * E. g. the pixel coordinate x/y = 1.8/2.3 gives the following weights:
 *          +------+------+
 *          |      |      |
 *          | 14%  | 56%  |		14% = 20%*70%, 56% = 80%*70%
 *          |      |      |
 *          +------+------+
 *          |      |      |
 *          | 6%   | 24%  |		6% = 20%*30%, 24% = 80%*30%
 *          |      |      |
 *          +------+------+
 * 
 * The weights are applied to the neighors and the resulting pixel value is saved at the given location.
 * 
 * NOTE
 * The input and output image must have the same pixel size.
 * 
 * @param img_out On return: image with interpolated values
 * @param x saved interpolated pixel value at this x-coordinate
 * @param y saved interpolated pixel value at this y-coordinate
 * @param height image height of input and output image in number of pixels
 * @param width image width of input and output image in number of pixels
 * @param img_in input image to interpolate pixel values
 * @param coord_x x-coordinate to interpolate
 * @param coord_y y-coordinate to interpolate
 * @param scale_fact coordinates are scaled by this factor
 */
static void interpolate_rgb8_scalar(uint8_t *img_out, const int x, const int y, const int height, const int width,
						 const uint8_t *img_in, const int coord_x, const int coord_y, const int scale_fact)
#include "alg_interpolate_rgb_scalar.h"


/**
 * Pixel value interpolation of RGB image (16 bit per color channel).
 * If a pixel coordinate with a fraction part is of interest, do interpolate the correct value from their neighbor's pixel.
 * 
 * E. g. the pixel coordinate x/y = 1.8/2.3 gives the following weights:
 *          +------+------+
 *          |      |      |
 *          | 14%  | 56%  |		14% = 20%*70%, 56% = 80%*70%
 *          |      |      |
 *          +------+------+
 *          |      |      |
 *          | 6%   | 24%  |		6% = 20%*30%, 24% = 80%*30%
 *          |      |      |
 *          +------+------+
 * 
 * The weights are applied to the neighors and the resulting pixel value is saved at the given location.
 * 
 * NOTE
 * The input and output image must have the same pixel size.
 * 
 * @param img_out On return: image with interpolated values
 * @param x saved interpolated pixel value at this x-coordinate
 * @param y saved interpolated pixel value at this y-coordinate
 * @param height image height of input and output image in number of pixels
 * @param width image width of input and output image in number of pixels
 * @param img_in input image to interpolate pixel values
 * @param coord_x x-coordinate to interpolate
 * @param coord_y y-coordinate to interpolate
 * @param scale_fact coordinates are scaled by this factor
 */
static void interpolate_rgb16_scalar(uint16_t *img_out, const int x, const int y, const int height, const int width,
						  const uint16_t *img_in, const int coord_x, const int coord_y, const int scale_fact)
#include "alg_interpolate_rgb_scalar.h"


/**
 * Pixel value interpolation of monochrome image (8 bit per pixel).
 * If a pixel coordinate with a fraction part is of interest, do interpolate the correct value from their neighbor's pixel.
 * 
 * E. g. the pixel coordinate x/y = 1.8/2.3 gives the following weights:
 *          +------+------+
 *          |      |      |
 *          | 14%  | 56%  |		14% = 20%*70%, 56% = 80%*70%
 *          |      |      |
 *          +------+------+
 *          |      |      |
 *          | 6%   | 24%  |		6% = 20%*30%, 24% = 80%*30%
 *          |      |      |
 *          +------+------+
 * 
 * The weights are applied to the neighors and the resulting pixel value is saved at the given location.
 * 
 * NOTE
 * The input and output image must have the same pixel size.
 * 
 * @param img_out On return: image with interpolated values
 * @param x saved interpolated pixel value at this x-coordinate
 * @param y saved interpolated pixel value at this y-coordinate
 * @param height image height of input and output image in number of pixels
 * @param width image width of input and output image in number of pixels
 * @param img_in input image to interpolate pixel values
 * @param coord_x x-coordinate to interpolate
 * @param coord_y y-coordinate to interpolate
 * @param scale_fact coordinates are scaled by this factor
 */
static void interpolate_mono8_scalar(uint8_t *img_out, const int x, const int y, const int height, const int width,
						 const uint8_t *img_in, const int coord_x, const int coord_y, const int scale_fact)
#include "alg_interpolate_mono_scalar.h"


/**
 * Pixel value interpolation of monochrome image (16 bit per pixel).
 * If a pixel coordinate with a fraction part is of interest, do interpolate the correct value from their neighbor's pixel.
 * 
 * E. g. the pixel coordinate x/y = 1.8/2.3 gives the following weights:
 *          +------+------+
 *          |      |      |
 *          | 14%  | 56%  |		14% = 20%*70%, 56% = 80%*70%
 *          |      |      |
 *          +------+------+
 *          |      |      |
 *          | 6%   | 24%  |		6% = 20%*30%, 24% = 80%*30%
 *          |      |      |
 *          +------+------+
 * 
 * The weights are applied to the neighors and the resulting pixel value is saved at the given location.
 * 
 * NOTE
 * The input and output image must have the same pixel size.
 * 
 * @param img_out On return: image with interpolated values
 * @param x saved interpolated pixel value at this x-coordinate
 * @param y saved interpolated pixel value at this y-coordinate
 * @param height image height of input and output image in number of pixels
 * @param width image width of input and output image in number of pixels
 * @param img_in input image to interpolate pixel values
 * @param coord_x x-coordinate to interpolate
 * @param coord_y y-coordinate to interpolate
 * @param scale_fact coordinates are scaled by this factor
 */
static void interpolate_mono16_scalar(uint16_t *img_out, const int x, const int y, const int height, const int width,
						  const uint16_t *img_in, const int coord_x, const int coord_y, const int scale_fact)
#include "alg_interpolate_mono_scalar.h"


/**
 * Apply iosceles trapez correction.
 * 
 * @param data correction data
 */ 
static void correct(struct trapcorr_data_t *data) {
	int x, y, x_corr, y_corr;
	const int width = data->width;
	const int height = data->height;
	int bit_channel =  data->bit_channel;
	struct coord_t *map = data->map;
	void *img_calib = data->img_out;
	void *img_uncalib = data->img_in;
	const int scale_fact = data->map_scale_fact;
	const int is_color = data->is_color;
	
	for(y = 0; y < height; y++) {
		for(x = 0; x < width; x++) {
			x_corr = map->x;
			y_corr = map->y;
			map++;
			
			if(bit_channel <= 8) {
				if(is_color) {
					interpolate_rgb8_scalar(img_calib, x, y, height, width, img_uncalib, x_corr, y_corr, scale_fact);
				}
				else {
					interpolate_mono8_scalar(img_calib, x, y, height, width, img_uncalib, x_corr, y_corr, scale_fact);
				}
			}
			else if(bit_channel <= 16) {
				if(is_color) {
					interpolate_rgb16_scalar(img_calib, x, y, height, width, img_uncalib, x_corr, y_corr, scale_fact);
				}
				else {
					interpolate_mono16_scalar(img_calib, x, y, height, width, img_uncalib, x_corr, y_corr, scale_fact);
				}
			}
		}
	}
}


/**
 * Initialze perspective correction map.
 * 
 * @param data required correction data
 */ 
static void init_map(struct trapcorr_data_t *data) {
	
	int x, y;
	struct coord_t *map = data->map;
	const int scale_fact = (1 << (data->map_scale_fact));
	const int width = data->width;
	const int height = data->height;
	float p, p_i, row_scale, x_corr, y_corr;
	int x_start, x_end;
	int shrink_upper;
	
	// convert -100.0...+100.0 ---> 0.0...2.0
	const float fact = data->wh/100.0f+1.0f;
	
	/*
	 * Checking whether we shrink upper or lower horizontal
	 * trapeze line.
	 */ 
	if(data->wh <= 1.0f) {
		// upper line shrinks
		shrink_upper = 1;
		p = fact * (width/2.0f);
	}
	else {
		// lower line shrinks
		shrink_upper = 0;
		p = (2.0f - fact) * (width/2.0f);
	}
	
	/*
	 * We'll loop through image with y-axis symmetrically centered.
	 * So the image is horizontally shifted to left. Do calculate
	 * the start and end values on x-axis.
	 */ 
	if((width%2) == 0) {
		// even width
		x_start = (-1)*width/2;
		x_end = width/2-1;
	}
	else {
		// odd width
		x_start = (-1)*(width-1)/2;
		x_end = (width-1)/2;
	}
	
	// loop through image
	for(y = 0; y < height; y++) {
		if(shrink_upper) {
			p_i = ((width/2.0f - p) / height) * y + p;
		}
		else {
			p_i = (-1.0f*((width/2.0f - p) / height)) * y + width/2.0f;
		}
				
		row_scale = 2.0f * p_i / width;
		
		// we don't correct vertically
		y_corr = y;
		
		for(x = x_start; x <= x_end; x++) {
			x_corr = x/row_scale;
			
			// trapeze is horizontally symmetrically centered --> shift right
			x_corr -= x_start;
			
			// apply scaling factor
			map->x = (int)roundf(x_corr*scale_fact);
			map->y = (int)roundf(y_corr*scale_fact);
			map++;
		}
	}
}


/**
 * Apply iosceles trapez correction to given image type.
 * 
 * @param trapcorr_data required data for trapez correction
 * @return 0 on success otherwise -1
 */
int trapcorr(struct trapcorr_data_t *trapcorr_data) {
	
	/*
	 * Create perspective correction map if needed.
	 */ 
	if(trapcorr_data->map_init == 0) {
		trapcorr_data->map_scale_fact = 9;	// scale by 9 means 2^9 = 512
		init_map(trapcorr_data);
		trapcorr_data->map_init = 1;
	}
	
	// apply perspective correction
	correct(trapcorr_data);
	return 0;
}